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Computational Visual Sensing
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Tagging computational algorithms with optical systems has expanded
visual sensing ability
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• Visual data lie in a complex high-dimensional space that is hard to model analytically.
• Data-driven approach allows to “learn” a good approximate model from visual data.
• The “learned” model can improve the performance of visual sensing systems.
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Data-driven “learned” models can improve the quality 
of visual sensing systems.
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Joint design with data-driven techniques can bring out 
best in both systems



Visual Sensing using Machine Learning

Optical
System

Machine 
Learning

Machine Learning System

Part I: Backend ML Part II: Joint design with ML

Part III: ML with Optical System

Optical
System

Machine 
Learning

Optical
Layer(s)

Electronic 
Layer(s)

Part III: ML with Optical System

Optical
Layer(s)

Electronic
Layers(s)

Vision
(Inference/

Classification

Machine Learning System

Incorporating optical layer(s) into machine learning system can 
decrease latency and power
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Image Priors
Hand-crafted priors
–Images as signals
–Signal statistics priors
–E.g. Sparse gradients, self-

similarity

Data-driven priors
–Captures complex “visual” 

priors
–Not easily describable as signal 

statistics
–E.g. Perceptual feature maps, 

adversarial

Part I: Backend ML

Capturing good “Visual” priors lead to high-quality reconstructions



Solving Inverse Compressive Imaging Problems 
using Deep Pixel-level Prior

Example 1:

Part I: Backend ML

Akshat Dave, Anil Kumar Vadathya, Ramana Subramanyam, Rahul 
Baburajan, and Kaushik Mitra. 
“Solving inverse computational imaging problems using deep pixel-
level prior.”
IEEE Transactions on Computational Imaging (TCI) (2018).



Compressive Optical System

SPC

LiSens

Single Pixel Camera (SPC)

Line Sensor Camera (LiSens)

Baraniuk et al., 2006
Wang et al., 2015

Spatially multiplexing to reduce sensor 
cost e.g. for non-visible wavelength



Ill posed inverse problem

Forward 
model

Measurements
<< Image size

Ill posed – A is is non invertible or poor condition number

SPC

LiSens



Hand-crafted prior

Original Image
Reconstructed Image
(5% Measurements)

TVAL3



• Using a set of dataset of natural images

• Deep generative models: Quite successful in modelling natural image 
distribution

Learn the prior

Deep 
Generative

Model

Dataset of natural images



Autoregressive Models

• Factorize the prior distribution as 

• Tractable expression for prior density

• Provides pixel-level consistencies in reconstructions

• PixelCNN++



CI lab, IIT Madras

Problem Formulation

• Given Y and  the forward model,  find X

• Maximum-A-Posteriori Inference

Forward 
Model

Learned 
Autoregressive Model

Forward
Model



CI lab, IIT Madras

Iterative Approach

Prior Step

Gradient ascent 
over Autoregressive 

Prior

Repeat until convergence

Likelihood Step

Satisfy forward 
model



CI lab, IIT Madras

Iterative Approach

Prior Step

Gradient ascent 
over Autoregressive 

Prior

Repeat until convergence

Likelihood Step

Satisfy forward 
model



CI lab, IIT Madras

Results

Better reconstructions in terms of metrics and  pixel-level consistencies

Original Image TVAL3 Ours

22.54 dB, 0.705 30.51 dB, 0.918

23.78 dB, 0.917 32.14 dB, 0.987



Deep Photorealistic Reconstruction of Lensless
Images

Example 2:

Part I: Backend ML

Salman Khan, Adarsh V.R., Vivek Boominathan, Jasper Tan, Ashok 
Veeraraghavan and Kaushik Mitra. 
Under review



Thin Optical System

Drastically reducing camera thickness by replacing lens with thin mask

S. Asif et al., IEEE Transactions on Computational 
Imaging (2016)

FlatCam



Ill posed inverse problem
Forward Model:

Capture Scene

Y XΦ" Φ#

Ill posed – Φ" and Φ# are poorly conditioned



Regularized reconstruction

Reconstruction Regularization



Data-driven reconstruction

Measurement PreviousDeep learning

…

New



Naïve approach

Measurement

Data-driven

Hand-crafter prior
reconstruction

OutputPerceptual enhancement



End-to-end approach

Measurement
Output

-1

Fully trainable deep network

Model inversion Perceptual enhancement

W1 ⇥ Y ⇥WT
2
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Learned

Based on forward model

Naïve approach



Results
Raw Captures

Tikhonov
regularization Naïve End-to-End



Results

Raw 
Captures

Tikhonov
regularization

Data-driven
End-to-End



Part I: Summary Part I: Backend ML
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Fixed Data-driven Improve Quality

Data-driven method captures good “Visual” priors 
leading to high-quality reconstructions
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Optical system design
Independent-crafted design
–Motivated by signal processing 

theory
–Reconstruction algorithm 

developed separately and may 
not compensate for drawbacks 
in design
–Doesn’t achieve best optimal 

combination

Data-driven design
–Design and reconstruction 

algorithm tied tightly
–Design is optimized to bring the 

best out of reconstruction 
algorithm
–Jointly produce optimal system

Joint (optical + algorithm) design lead to high-quality reconstructions

Part II: Joint design with ML 



PhaseCam3D - Learning Phase Masks For Passive 
Single-view Depth Estimation

Example 1:

Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan, 
and Ashok Veeraraghavan. 
“PhaseCam3D—Learning Phase Masks for Passive Single View Depth 
Estimation.” 
IEEE International Conference on Computational Photography (ICCP), 2019

Part II: Joint design with ML 



PhaseCam3D sensor

Optical System Digital network

…

SensorPhase mask

Lens

Depth map

Scene

Phase-mask 
based camera

Depth reconstruction 
algorithm

End-to-end neural network

Part II: Joint design with ML 



Defocus of general lens

Defocused image

× Identical PSF at both sides of the focal plane.
× Impossible to tell the depth based on the blur size.

FocusFar Near
PSFs at different depths

𝑧 Sensor

Lens

trentwoodsphoto.com



Independent-crafted designs
Veeraraghavan et al., 2007

FocusFar Near

Aperture plane

FocusFar

𝑧 Sensor

Lens

Aperture plane 𝑧 Sensor

Lens

Levin et al., 2007



PhaseCam3D sensor

Optical System Digital network

…

PhaseCam3D sensor

q Differential optical model
q Digital network
q End-to-end learning

SensorPhase mask

Lens

Depth map

Scene



Model for the optical system

Pupil function 𝑃

Object

SensorPhase mask

Lens

𝑃𝑆𝐹 = 𝐹{𝑃} +

𝑃 = exp[𝑗𝜙23 ℎ + 𝑗𝜙267 𝑧 ]
DefocusPhase mask

PSF formulation

Noise
𝐼:;<:=>(ℎ) =A

B

𝐼=CD(𝑧) ⊗ 𝑃𝑆𝐹2 ℎ, 𝑧 + 𝑁(0, 𝜎+)

Image formulation

Differentiable model



Model for the digital network

• Pixel-wise prediction
• Skip connection

3
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conv 3x3, ReLU, BN
copy and concatenate
max pool 2x2
upsampling 2x2
conv 1x1, sigmoid

Coded image Estimated depthU-Net



• RGBD dataset
–Experimental: boundary mismatch, missing depth
– Synthetic: precise texture and depth

• Loss functions
–Root mean square (RMS) loss
–Gradient loss

• Mask parameters
–Coefficients of Zernike polynomial basis

Train the network
RGB Disparity

FlyingThings3D

Zernike polynomials



PhaseCam3D: an end-to-end learning approach

Optical System Digital network

…

PhaseCam3D sensor

SensorPhase mask

Lens

Depth map

Scene

q Differential optical model
q Digital network
q End-to-end learning



Optimal simulation results
Height map

PSFs
-10 -9 -8 -7 -6 -5 -4

-3 -2 -1 0 1 2 3

4 5 6 7 8 9 10

Sharp image Coded image

Estimated disparityTrue disparity



Comparison with independent-crafted designs

Avg. RMS loss 0.052 0.054 0.028
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Ground truth Levin et al. Veeraraghavan et al. Ours
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Fabricate the learned phase mask

Photonic Professional GT, Nanoscribe GmbH 

Two-photon lithography 3D printer Fabricated phase mask

2.835 mm 



Experimental results

Indoor scenes Outdoor scenes
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Experimental results
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Indoor scenes Outdoor scenes



Accuracy evaluation: compare with Kinect

Coded Images

Estimated depth by PhaseCam3D

Estimated depth by Kinect

0.6

0.8

1

1.2

1.4

[m]

Error: 
𝜎JKL:;MLNO6 = 1.25cm



End-to-end Optimization of Optics and Image 
Processing for Achromatic EDOF 

Example 2:

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen 
Boyd, Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein. 
“End-to-end optimization of optics and image processing for 
achromatic extended depth of field and super-resolution imaging.”
ACM Transactions on Graphics (TOG), 2018.

Part II: Joint design with ML 



Joint design of optics and Image reconstruction

Optical system:
Parameterized Lensing Element

Sitzmann et al., TOG, 2018



Results – Achromatic EDOF

Depth: 1.0m

Depth: 0.5m

Fresnel
Lens

Cubic Phase
Lens

Multi-focal
Lens

Diffractive
Achromat

End-to-end
Optimized

Independent-crafted optics

Dowskey & 
Cathey, 95

Peng et. al., 
2016

Sitzmann et al., TOG, 2018



Learning Sensor Multiplexing Design through 
Back-propagation 

Example 3:

Ayan Chakrabarti. 
“Learning sensor multiplexing design through back-propagation.” 
In Advances in Neural Information Processing Systems (NeurIPS), 
2016.

Part II: Joint design with ML 



Joint design of color multiplexing and demosaicking

Optical system:
Sensor color filter array

Ayan Chakrabarti, NeurIPS, 2016



Results – Color demultiplexing

Bayer

Independent-crafted

CFZ

ICCP 14

Learned

Ground Truth

Ayan Chakrabarti, NeurIPS, 2016



Part II: Summary

Joint design with data-driven techniques can bring out 
best in both systems

Part II: Joint design with ML 
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ML Optical layer
Traditional Vision
–Camera captures sharp image
–ML algorithm extracts features 

to perform inference
–All computation is electronic,

consuming energy

ML with optical layer
–Optical layer directly extracts 

features
–Electronic layer uses the

features for inference
–Reduced power consumption

Optical layer can extract features directly 
that can be used for inference

Part III: ML with Optical System



ASP Vision: Optically Computing the First Layer of 
CNNs using Angle Sensitive Pixels

Example 1:

Huaijin G. Chen, Suren Jayasuriya, Jiyue Yang, Judy Stephen, Sriram 
Sivaramakrishnan, Ashok Veeraraghavan, and Alyosha Molnar. 
“ASP vision: Optically computing the first layer of convolutional neural 
networks using angle sensitive pixels.” 
Computer Vision and Pattern Recognition (CVPR), 2016.

Part III: ML with Optical System



ASP camera as first layer of DNN

“Elephant”

L3 LN OutputL2

···

ASP Vision : Sensor + Deep Learning Co-Design

Reduced CNN

ASP Camera
L1

Scene

Optically computed

···

ASP camera has gabor like 
filters that show up as kernels 

in many CNNs, eg. AlexNet



Angle Sensitive Pixels (ASPs)
• ASPs are CMOS image sensors that have two 

diffraction gratings over photodiodes

• Different oriented/spaced gratings produce 
different oriented/frequency gabor-like point-
spread-functions.

BA

CMOS Active Area

Diffraction Gratings

[Wang and Molnar, JSSC 2012]
[M. Hirsch et al., ICCP 2014]

Low frequency Mid frequency High frequency60µm

40
µm



ASP sensors save energy with edge-only digitization
Sony (ISSCC 2015) ASP Image Sensor

Resolution 5256 x 3934 (20M) 384 x 384 (effective ASP tile 
resolution: 96 x 64)

Energy 
consumption

Total power: 428 mW
No breakdown of power 
reported

Total Power: 1.8 mW
Pixel Array: 300 μW
Amplifiers: 900 μW
Timing/Addressing: 500 μW
ADCs: 100 μW

340 pJ/frame/pixel 33 pJ/frame/pixel

90.2% Energy saving

Transmission 
bandwidth

Transmitting the entire image Transmitting only edges

1.2 Mbits/frame @ 
384 ⨉384⨉8bits

120 Kbits/frame @ 
384⨉384⨉8bits

10:1 Compression ratio

Capabilities
2D image and video capture 2D images and video, edge 

filtered images, light field 
information

• 90% savings in 
image sensing

• 90% savings in 
bandwidth

[A. Wang, S. Sivaramakrishnan, 
and A. Molnar, CICC 2012]



Results - ASP Vision performs comparably to CNNs 
on datasets

99.12%

86.40%

57.50%

65.67%

99.14%

84.90%

55.60%

69.78%

99.04%

81.80%

50.90%

66.80%

0% 20% 40% 60% 80% 100%

MNIST - LeNet
(Digit Recognition)

CIFAR-10 - NiN
(Object

Classification)

CIFAR-100 - NiN
(Object

Classification)

PF-83 - VGG-M
(Face Identification)

Classification Accuracy

Performance on Visual Recognition Tasks

ASP Vision Baseline - 12 filters Baseline - Original # of filters



How many FLOPs can we save by skipping the first 
layer?

VGG-M NiN LeNet
# of Conv. Layers 8 9 4

Input Image Size 224 ⨉ 224 ⨉ 3 32 ⨉ 32 ⨉ 3 28 ⨉ 28 ⨉ 1

# of First Layer Filters 96 
(Original)

12
(Prototype)

192 
(Original)

12 
(Prototype)

20
(Original)

12 
(Prototype)

First Layer Conv. Kernel 7 ⨉ 7 ⨉ 96 7 ⨉ 7 ⨉ 12 5 ⨉ 5 ⨉ 192 5 ⨉ 5 ⨉ 12 5 ⨉ 5 ⨉ 20 5 ⨉ 5 ⨉ 12

FLOPS of Fist layer 708.0M 88.5 M 14.75M 921.6K 392 K 235 K

Total FLOPS 6.02G 3.83 G 200.3M 157 M 10.4 M 8.8 M

First Layer FLOPS Saving 11.76% 2.3% 7.36% 0.6% 3.77% 2.67%



Hybrid optical-electronic convolutional neural 
networks with optimized diffractive optics for 
image classification

Example 2:

Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and 
Gordon Wetzstein. 
“Hybrid optical-electronic convolutional neural networks with 
optimized diffractive optics for image classification.”
Scientific reports (2018).

Part III: ML with Optical System



Hybrid optical-electronic CNN

Phase mask in Fourier plane to 
generate learned convolution 

filters
Chang et. al., Scientific Reports, 2018



4F Optical system

(c) Captured PSF and sensor image

Chang et. al., Scientific Reports, 2018



Results – CIFAR 10 classification

2x classification accuracy for 
same power

Only 12% of FLOPs for same 
accuracy

Chang et. al., Scientific Reports, 2018



All-optical machine learning using diffractive 
deep neural networks 

Example 3:

Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, 
Mona Jarrahi, and Aydogan Ozcan. 
“All-optical machine learning using diffractive deep neural networks.”
Science (2018)

Part III: ML with Optical System



All Diffractive Optical System

Machine Learning System

Diffractive Optical
Layer

Diffractive layers interacting 
with input coherent field

Lin et. al., Science, 2018



Learned diffractive masks
Phase mask profiles

Lin et. al., Science, 2018



Results – Classification accuracy
MNIST classification Fashion-MNIST classification

Lin et. al., Science, 2018



Part III: Summary

Incorporating optical layer(s) into machine learning system 
can decrease latency and power

Part III: ML with Optical System
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Machine Learning System



Summary: Visual Sensing using Machine Learning
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