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Tagging computational algorithms with optical systems has expanded
visual sensing ability
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* Visual data lie in a complex high-dimensional space that is hard to model analytically.
* Data-driven approach allows to “learn” a good approximate model from visual data.
* The “learned” model can improve the performance of visual sensing systems.




Visual Sensing using Machine Learning

Part I: Backend ML
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Data-driven “learned” models can improve the quality
of visual sensing systems.




Visual Sensing using Machine Learning

Part 1I: Joint design with ML
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Joint de5|gn with data-driven techniques can bring out

best in both systems




Visual Sensing using Machine Learning

Part I11I: ML with Optical System
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Incorporating optical layer(s) into machine learning system can
decrease latency and power




Visual Sensing using Machine Learning

Part I: Backend ML

Optical ‘ Machine




Part I: Backend ML

lmage Priors
Hand-crafted priors Data-driven priors
—Images as signals —Captures complex “visual”
—Signal statistics priors priors
—E.g. Sparse gradients, self- —Not easily describable as signal
similarity statistics

—E.g. Perceptual feature maps,
adversarial

Capturing good “Visual” priors lead to high-quality reconstructions



Part I: Backend ML

Example 1:

Solving Inverse Compressive Imaging Problems
using Deep Pixel-level Prior

Akshat Dave, Anil Kumar Vadathya, Ramana Subramanyam, Rahul
Baburajan, and Kaushik Mitra.
“Solving inverse computational imaging problems using deep pixel-
level prior.”

c IEEE Transactions on Computational Imaging (TCl) (2018).




Compressive Optical System
Single Pixel Camera (SPC)

] SPC

{ micromirror
=" { device

Y (DMD)

A

I: LiSens

relay
lens

cylindrical
lens

Spatially multiplexing to reduce sensor

cost e.g. for non-visible wavelength Baraniuk et al., 2006

Wang et al., 2015



lll posed inverse problem

Y
] SPC v — AX
Forward
— model
I: LiSens I

Measurements
<< Image size

lll posed — A is is non invertible or poor condition number



Hand-crafted prior

Reconstructed Image
Original Image (5% Measurements)




Learn the prior

e Using a set of dataset of natural images

* Deep generative models: Quite successful in modelling natural image
distribution
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Dataset of natural images



Autoregressive Models
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« Factorize the prior distribution as

2
p(X) — p(:l?l, L2y e v 737n2) — H?:l p(@“i‘XQ)
« Tractable expression for prior density

« Provides pixel-level consistencies in reconstructions

e PixelCNN++



Problem Formulation

<

« GivenY and the forward model, find X

« Maximum-A-Posteriori Inference

A

X = argmax log p(X|Y)
X
X = argmax logp(X) + logp(Y|X)

X Forward
Model

Cl lab, IIT Madras



Iterative Approach

X = argmax | log p(X)
X

_|_

log p(Y|X)

Repeat until convergence

Gradient ascent
over Autoregressive
Prior

Satisfy forward
model

Cl lab, IIT Madras



Iterative Approach

X = argmax | log p(X)
X

_|_

log p(Y|X)

Repeat until convergence

Gradient ascent
over Autoregressive
Prior

Satisfy forward

model

Cl lab, IIT Madras



Results

Original Image

23.78 dB, 0.917
Better reconstructions in terms of metrics and pixel-level consistencies

Cl lab, IIT Madras



Example 2:

Part I: Backend ML

Deep Photorealistic Reconstruction of Lensless

Images

Salman Khan, Adarsh V.R., Vivek Boominathan, Jasper Tan, Ashok

Veeraraghavan and Kaushik Mitra.
Under review




Thin Optical System

FlatCam S Thickness ~1 mm

Sensor measurements Reconstructed image
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Drastically reducing camera thickness by replacing lens with thin mask

S. Asif et al., IEEE Transactions on Computational
Imaging (2016)



lll posed inverse problem

Forward Model:

Capture

lll posed — ®; and @ are poorly conditioned



Regularized reconstruction

X =argmin||®;, X P} — Y||% + N[ X]|%
X
1

Reconstruction Regularization

’/







Naive approach

Hand-crafter prior

Output
reconstruction Perceptual enhancement P

Measurement




End-to-end approach

Fully trainable deep network

Measurement

Model inversion Perceptual enhancement
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Based on forward model
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Results

Tikhonov
Raw Captures regularization \ENVE End-to-End




Results

Raw
Captures

Tikhonov
regularization

Data-driven
End-to-End




Part I: Backend ML

Part I: Summary

Fixed Data-driven Improve Quality
Optical Machine
‘ . ‘ Output
Learning P

Data-driven method captures good “Visua

III

priors

leading to high-quality reconstructions




Visual Sensing using Machine Learning

Part II: Joint design with ML
)

Optical Machine
System Learning




Optical system design Part II: Joint design with ML

Independent-crafted design Data-driven design
—Motivated by signal processing —Desigh and reconstruction
theory algorithm tied tightly
—Reconstruction algorithm —Design is optimized to bring the
developed separately and may best out of reconstruction
not compensate for drawbacks algorithm
in design —Jointly produce optimal system

—Doesn’t achieve best optimal
combination

Joint (optical + algorithm) design lead to high-quality reconstructions



‘ Part II: Joint design with ML

Example 1:

PhaseCam3D - Learning Phase Masks For Passive
Single-view Depth Estimation

Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan,

and Ashok Veeraraghavan.
“PhaseCam3D—Learning Phase Masks for Passive Single View Depth

Estimation.”




PhaseCam3D sensor Part II: Joint design with ML

| Phase-mask Depth reconstruction |
| based camera algorithm |
| Lens |
| A |
: —> : Depth map
I I
| PhaseI EN Sensor |
: Optical System Digital network :

End-to-end neural network



Defocus of general lens

Defocused 1mage

Sensor

PSFs at different depths

Far < Focus > Near

X |dentical PSF at both sides of the focal plane.
X Impossible to tell the depth based on the blur size.

trentwoodsphoto.com



Independent-crafted designs

Veeraraghavan et al., 2007 Levin et al., 2007
Lens Lens
Z Aperture plane Sensor Z Aperture pI Sensor
Focus ——> Near Far < Focus

;MW oW oW

Far <—
o L
% ’e : i
1 =




PhaseCam3D sensor

PhaseCam3D sensor

|

- I

: —> : Depth map
| |

| PhaseI mask Sensor |

: Optical System Digital network :

[ Differential optical model
] Digital network
J End-to-end learning



Model for the optical system

Lens
AN

|
Phase mask Sensor

Pupil function P

PSF formulation Image formulation
PSF = |F{P}|?

P = exp[jpy (R) + o1 (2)]
Phase mask Defocus

Lsensor(h) = Z Iobj(Z) ® PSF,(h,z) + N(O, 0-2)
z Noise

Differentiable model



Model for the digital network

Coded image
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33232 * Pixel-wise prediction 64 3232 1
e Skip connection
-»>|»> > >
+» conv 3x3, ReLU, BN
v max pool 2x2 ﬁ
v 64 64 4 upsampling 2x2 128 64 *
-+ conv 1x1, sigmoid
> > > >
‘go S
¥ 128 128 256 128
S+ I*I*I

v 256 256 256
gl-'--'- -"-"-
v

512
”2-—}__

Estimated depth




Train the network FlyingThings3D

 RGBD dataset RGB Disparity

— Experimental: boundary mismatch, missing depth
—Synthetic: precise texture and depth

e Loss functions
—Root mean square (RMS) loss
—Gradient loss

* Mask parameters -
Coefficients of Zernike polynomial basi - -

_ .
oefficients of Zernike polynomial basis $O8
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PhaseCam3D: an end-to-end learning approach

PhaseCam3D sensor

: Lens |
| g |
: —> : Depth map
| |
| PhaseI mask Sensor |
: Optical System Digital network :

[ Differential optical model
& Digital network
& End-to-end learning



Sharp i |mage Coded image

Optimal simulation results

Height map
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Comparison with independent-crafted designs

Ground truth Levin ef al. Veeraraghavan ef al. PhaseCam3D

" T

Lal r il

Avg. RMS loss 0.052 0.054

Coded images

Disparity map




Fabricate the learned phase mask

Two-photon lithography 3D printer

Fabricated phase mask

. : . 2.835 mm
Photonic Professional GT, Nanoscribe GmbH



Experimental results

Indoor scenes
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Coded images
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Experimental results

Indoor scenes Outdoor scenes
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Coded images

Depth map
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. 1 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
meters meters



Accuracy evaluation: compare with Kinect
|lﬁti&ate_d depth by PhaseCam3D
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‘ Part II: Joint design with ML

Example 2:

End-to-end Optimization of Optics and Image
Processing for Achromatic EDOF

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen
Boyd, Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein.
“End-to-end optimization of optics and image processing for
achromatic extended depth of field and super-resolution imaging.”
ACM Transactions on Graphics (TOG), 2018.



Joint design of optics and Image reconstruction

Image Dataset Optics Model Sensor Model Computational Domain-
=10 e Image Reconstruction Specific Loss

Noise 7

y . : >
< minly-G(a) [+ el =2 L

ox

Optical system:
Parameterized Lensing Element

Sitzmann et al., TOG, 2018



Results — Achromatic EDOF

Independent-crafted optics

Fresnel ,Cubic Phase Multi-focal Diffractive\ I_End-to-end 1
Lens Lens Lens Achromat | Optimized |
: — = : S Y # o

Depth: 1.0m

Depth: 0.5m

Dowskey & Peng et. al.,
Cathey, 95 2016

Sitzmann et al., TOG, 2018



‘ Part II: Joint design with ML

Example 3:

Learning Sensor Multiplexing Design through
Back-propagation

Ayan Chakrabarti.
“Learning sensor multiplexing design through back-propagation.”
In Advances in Neural Information Processing Systems (NeurlPS),

2016.



Joint design of color multiplexing and demosaicking

Optical Measurement Computational Reconstruction

mmmm | 0SS Gradients

Reconstruction ) g

Sensor CFA Pattern —>C Network )_ >
(PxP Repeated)

Measures one of C

channels per pixel

Input as intensities Sensor Full Color
in C possible channels Measurements RGB Image

Optical system:
Sensor color filter array

Ayan Chakrabarti, NeurlPS, 2016



Results — Color demultiplexing

Independent-crafted | Learned

|
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ICCP 14 Ayan Chakrabarti, NeurlPS, 2016



Part IT: Summary ‘ Part II: Joint design with ML

Data driven

Improve Quality

Optical ‘ I\/Iachlne ‘ Output

System Learning

Joint design with data-driven techniques can bring out

best in both systems




Visual Sensing using Machine Learning

Part 11I: ML with Optical System




ML Optical layer Part III: ML with Optical System

Traditional Vision ML with optical layer
—Camera captures sharp image —Optical layer directly extracts
—ML algorithm extracts features features

to perform inference —Electronic layer uses the
—All computation is electronic, features for inference
consuming energy —Reduced power consumption

Optical layer can extract features directly

that can be used for inference




Part III: ML with Optical System

Example 1:

ASP Vision: Optically Computing the First Layer of
CNNs using Angle Sensitive Pixels

Huaijin G. Chen, Suren Jayasuriya, Jiyue Yang, Judy Stephen, Sriram
Sivaramakrishnan, Ashok Veeraraghavan, and Alyosha Molnar.

“ASP vision: Optically computing the first layer of convolutional neural
networks using angle sensitive pixels.”

Computer Vision and Pattern Recognition (CVPR), 2016.
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ASP camera as first layer of DNN

ASP Vision : Sensor + Deep Learning Co-Design

] O
O
O
O

\ Optically computed Reduced CNN /

i
1l

- “Elephant”

\ 4

L_—_—_—_—_

-

ASP camera has gabor like
filters that show up as kernels
in many CNNs, eg. AlexNet



Angle Sensitive Pixels (ASPs)

e ASPs are CMOS image sensors that have two

Diffraction Gratings

diffraction gratings over photodiodes m,,,,
/214

 Different oriented/spaced gratings produce

different oriented/frequency gabor-like point- CMOS Active Area

spread-functions.

Low frequency Mid frequency /High frequency

40um

NEAS
/
NS

]S
NEAD
-

[Wang and Molnar, JSSC 2012]
[M. Hirsch et al., ICCP 2014]



ASP sensors save energy with edge-only digitization

Sony (ISSCC 2015) ASP Image Sensor
. i Resolution 5256 x 3934 (20M) 384 x 384 (effective ASP tile
¢ 90% SaVvi ngS 18 resolution: 96 x 64)
i ma ge sen Si N g Total power: 428 mW Total Power: 1.8 mW
No breakdown of power Pixel Array: 300 uW
reported Amplifiers: 900 pW
Energy Timing/Addressing: 500 uW
° 90% SaVi ngs in consumption ADCs: 100 pW
b an d Wldt h 340 pJ/frame/pixel 33 pJ/frame/pixel
90.2% Energy saving
Transmitting the entire image | Transmitting only edges
Transmission 1.2 Mbits/frame @ 120 Kbits/frame @
bandwidth 384 x384x8bits 384x384x8bits

[A. Wang, S. Sivaramakrishnan,
and A. Molnar, CICC 2012]

10:1 Compression ratio

2D image and video capture | 2D images and video, edge
Capabilities filtered images, light field
information




Results - ASP Vision performs comparably to CNNs
on datasets

Performance on Visual Recognition Tasks

66.80%
69.78%
65.67%

PF-83 - VGG-M
(Face Identification)

CIFAR-100 - NiN

(Object 60%
Classification) 7.50%
CIFAR-10 - NiN 81.80%
(Object 84.90%
Classification) 86.40%
MNIST - LeNet 99.04%
(Digit Recognition) 199.14%
-99.12%
0% 20% 40% 60% 80% 100%

Classification Accuracy
m ASP Vision  mBaseline - 12 filters  m Baseline - Original # of filters



How many FLOPs can we save by skipping the first

layer?
VGG-M NIN LeNet
# of Conv. Layers 8 9 4
Input Image Size 224 X 224 X 3 32 X32X3 28 X 28 X 1
: : 96 12 192 12 20 12
# of First Layer Filters (Original) (Prototype) (Original) (Prototype) (Original) (Prototype)
First Layer Conv. Kernel TXTX9 | TXTX12 [ SX5X192 | 5X5X12 | 5X5X20 | 5X5X12
FLOPS of Fist layer 708.0M 885 M 14.75M 921.6K 392 K 235K
Total FLOPS 6.02G 383G 200.3M 157 M 104 M 8.8 M
First Layer FLOPS Saving 2.3% 7.36% 0.6% 2.67%




Part III: ML with Optical System

Example 2:

Hybrid optical-electronic convolutional neural
networks with optimized diffractive optics for
image classification

Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and
Gordon Wetzstein.

“Hybrid optical-electronic convolutional neural networks with
optimized diffractive optics for image classification.”

Scientific reports (2018).



Hybrid optical-electronic CNN

conv block max pool relative scores class scores

sensor
readout

L—ecanma

optical electronic

Phase mask in Fourier plane to
generate learned convolution
HIES

Chang et. al., Scientific Reports, 2018



4F Optical system

b) Phase mask fabrication _
) mask template fabricated mask (c) Captured PSF and sensor image

optimized mask template 200m 1 4x objective

captured PSF captured input image




Results — CIFAR 10 classification

Simulation:

fully connected (FC) only 29.8+0.5% —/10,250 —/20,480
digital conv > ReLU > FC, unconstrained 51.9+1.3% —/1,490,954

digital conv > ReLU > FC, nonnegative —/1,490,954
digital conv > ReLU > FC, pseudonegative | 51.8 +0.6% — /83,234 —/2,818,058
optical conv > ReLU > FC, pseudonegative | 51.0+1.4% 104,976/81,938 3,779,136/180,234

Physical experiment:
optical conv > ReLU > FC, pseudonegative | 44.4% —/81,938 —/180,234

2x classification accuracy for Only 12% of FLOPs for same
same power accuracy

Chang et. al., Scientific Reports, 2018



Part III: ML with Optical System

Example 3:

All-optical machine learning using diffractive
deep neural networks

Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Velj, Yi Luo,
Mona Jarrahi, and Aydogan Ozcan.

“All-optical machine learning using diffractive deep neural networks.”
Science (2018)



All Diffractive Optical System

Diffractive Optical
Layer

Diffractive layers interacting
with input coherent field

Lin et. al., Science, 2018



Learned diffractive masks

Phase mask profiles

74

“X, y scanning
v’ SR
Terahertz Detector

Terahertz Sourcey -

== .
WRS.0 AMC

3D Printed D2NN
(Classifier)

Lin et. al., Science, 2018



Results — Classification accuracy
MNIST classification Fashion-MNIST classification

A Input Digit (Number 5) Confusion Matrix A Input Target (Sandal) Confusion Matrix

- Q0

Predicted Labels
Predicted Labels

O O N O ;s wN

3 4 5 6 01 2 3 45 8
True Labels True Labels

Output Distribution Energy Distribution (Percentage) Energy Distribution (Percentage)

Detector Regions
Detector Regions

L 0O N O o s WM

Detector 6 Detector
2 3 4 5 6 7 2 4
Input Digits (#50) Input Targ

ience, 2018



Part III: ML with Optical System

Part 111: Summary

Machine Learning System

Vision

~ (Inference/

Classification

Optlcal EIectromc

Layers(s)

——————————d

Incorporating optical layer(s) into machine learning system

can decrease latency and power




Summary: Visual Sensing using Machine Learning

(1) Backend ML (II ) Joint design with ML

Optical ‘ Machine Optical I\/Iachme
System Learning System Learning

( IIT ) ML with Optical System




