Vivek Boominathan Email: <u>vivek.booms@gmail.com</u> Webpage: <u>vivekboominathan.com</u>

Ashok Veeraraghavan http://computationalimaging.rice.edu/

**Rice University** 



## **Computational Visual Sensing**



Tagging computational algorithms with optical systems has expanded visual sensing ability

## **Data-driven Visual Sensing**



- Visual data lie in a complex high-dimensional space that is hard to model analytically.
- Data-driven approach allows to "learn" a good approximate model from visual data.
- The "learned" model can improve the performance of visual sensing systems.







Incorporating optical layer(s) into machine learning system can decrease latency and power



## **Image Priors**

## Hand-crafted priors

- -Images as signals
- -Signal statistics priors
- –E.g. Sparse gradients, selfsimilarity

## Data-driven priors

- –Captures complex "visual" priors
- Not easily describable as signal statistics
- –E.g. Perceptual feature maps, adversarial

### Capturing good "Visual" priors lead to high-quality reconstructions

### Example 1:

## Solving Inverse Compressive Imaging Problems using Deep Pixel-level Prior

Akshat Dave, Anil Kumar Vadathya, Ramana Subramanyam, Rahul Baburajan, and Kaushik Mitra.

"Solving inverse computational imaging problems using deep pixellevel prior."

*IEEE Transactions on Computational Imaging* (TCI) (2018).





## **Compressive Optical System**





LiSens

#### Single Pixel Camera (SPC)



#### Line Sensor Camera (LiSens)



Spatially multiplexing to reduce sensor cost e.g. for non-visible wavelength

Baraniuk et al., 2006 Wang et al., 2015

## Ill posed inverse problem



Ill posed – A is is non invertible or poor condition number

## Hand-crafted prior

#### Original Image



## Reconstructed Image (5% Measurements)



TVAL3

## Learn the prior

- Using a set of dataset of natural images
- Deep generative models: Quite successful in modelling natural image distribution



Deep Generative Model

 $p_{\theta}(\mathbf{X})$ 

Dataset of natural images

## **Autoregressive Models**



• Factorize the prior distribution as

$$p(\mathbf{X}) = p(x_1, x_2, \dots, x_{n^2}) = \prod_{i=1}^{n^2} p(x_i | \mathbf{x}_{< i})$$

- Tractable expression for prior density
- Provides pixel-level consistencies in reconstructions
- PixelCNN++

## **Problem Formulation**



- Given Y and the forward model, find X
- Maximum-A-Posteriori Inference

$$\hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{X}|\mathbf{Y}) \\ \hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{X}) + \log p(\mathbf{Y}|\mathbf{X}) \\ \underset{\mathbf{X}}{\operatorname{Learned}} Forward \\ \text{Autoregressive Model} Model$$

## Iterative Approach

$$\hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{X}) + \log p(\mathbf{Y}|\mathbf{X})$$

#### Repeat until convergence



## Iterative Approach

$$\hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{argmax}} \log p(\mathbf{X}) + \log p(\mathbf{Y}|\mathbf{X})$$

#### Repeat until convergence



## Results



Better reconstructions in terms of metrics and pixel-level consistencies

CI lab, IIT Madras

## Example 2: Deep Photorealistic Reconstruction of Lensless Images

Salman Khan, Adarsh V.R., Vivek Boominathan, Jasper Tan, Ashok Veeraraghavan and Kaushik Mitra. *Under review* 





## Thin Optical System



#### Drastically reducing camera thickness by replacing lens with thin mask

S. Asif et al., *IEEE Transactions on Computational Imaging* (2016)

## Ill posed inverse problem

#### Forward Model:

#### Capture



Ill posed –  $\Phi_L$  and  $\Phi_R$  are poorly conditioned

## **Regularized reconstruction**

# $X = \underset{X}{\operatorname{arg\,min}} ||\Phi_L X \Phi_R^T - Y||_F^2 + \lambda ||X||_F^2$

Reconstruction



Regularization

## Data-driven reconstruction



## Naïve approach





## Hand-crafter prior reconstruction



#### Perceptual enhancement



#### Output



## End-to-end approach



#### Fully trainable deep network

## Results

#### Raw Captures







#### Tikhonov regularization

Naïve

#### End-to-End















## Results

Raw Captures

Tikhonov regularization



Data-driven End-to-End

## Part I: Summary

Part I: Backend ML



## Data-driven method captures good "Visual" priors leading to high-quality reconstructions



## Optical system design

## Independent-crafted design

- Motivated by signal processing theory
- Reconstruction algorithm
   developed separately and may
   not compensate for drawbacks
   in design
- –Doesn't achieve best optimal combination

### Part II: Joint design with ML

## Data-driven design

- Design and reconstruction algorithm tied tightly
- Design is optimized to bring the best out of reconstruction algorithm
- -Jointly produce optimal system

## Joint (optical + algorithm) design lead to high-quality reconstructions

#### Example 1:

# PhaseCam3D - Learning Phase Masks For Passive Single-view Depth Estimation

Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan, and Ashok Veeraraghavan. "PhaseCam3D—Learning Phase Masks for Passive Single View Depth Estimation."

IEEE International Conference on Computational Photography (ICCP), 2019 arnegie ellon niversity

## PhaseCam3D sensor

### Part II: Joint design with ML



End-to-end neural network

## Defocus of general lens

#### Defocused image





× Identical PSF at both sides of the focal plane.
× Impossible to tell the depth based on the blur size.

trentwoodsphoto.com

## Independent-crafted designs

Veeraraghavan *et al.,* 2007





Levin *et al.,* 2007



Ċ,



## PhaseCam3D sensor



Differential optical model
Digital network
End-to-end learning

## Model for the optical system



Pupil function P



$$I_{sensor}(h) = \sum_{z} I_{obj}(z) \otimes PSF_{\lambda}(h, z) + N(0, \sigma^{2})$$
  
Noise

Image formulation

#### Differentiable model

## Model for the digital network



## Train the network

- RGBD dataset
  - Experimental: boundary mismatch, missing depth
  - -Synthetic: precise texture and depth
- Loss functions
  - Root mean square (RMS) loss
  - Gradient loss
- Mask parameters
  - Coefficients of Zernike polynomial basis

#### FlyingThings3D



#### Zernike polynomials



## PhaseCam3D: an end-to-end learning approach



Differential optical model
 Digital network
 End-to-end learning

## **Optimal simulation results**

#### Height map



#### PSFs -10 -7 -5 -9 -8 -6 -2 -3 0 -1 2 3 5 7 8 9 6 10

#### Sharp image



#### True disparity



#### Coded image



#### Estimated disparity



## Comparison with independent-crafted designs



## Fabricate the learned phase mask

#### Two-photon lithography 3D printer



#### Fabricated phase mask



Photonic Professional *GT*, Nanoscribe GmbH

## **Experimental results**

#### Indoor scenes

#### Outdoor scenes





## **Experimental results**

#### Indoor scenes Outdoor scenes Coded images Depth map 0.6 0.8 0.9 1.2 1.3 1.4 0.4 0.5 0.7 0.5 0.6 0.7 0.8 0.9 1.1 meters meters

## Accuracy evaluation: compare with Kinect

Estimated depth by PhaseCam3D



#### Example 2:

## End-to-end Optimization of Optics and Image Processing for Achromatic EDOF

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd, Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein. "End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging." *ACM Transactions on Graphics* (TOG), 2018.

## Joint design of optics and Image reconstruction



Optical system: Parameterized Lensing Element

Sitzmann et al., TOG, 2018

## Results – Achromatic EDOF



Dowskey & Cathey, 95

Peng et. al., 2016 Sitz

Sitzmann *et al.,* TOG, 2018

### Example 3:

## Learning Sensor Multiplexing Design through Back-propagation

Ayan Chakrabarti.

"Learning sensor multiplexing design through back-propagation." In *Advances in Neural Information Processing Systems* (NeurIPS), 2016.

## Joint design of color multiplexing and demosaicking



Optical system: Sensor color filter array

Ayan Chakrabarti, NeurIPS, 2016

## Results – Color demultiplexing



ICCP 14

Ayan Chakrabarti, NeurIPS, 2016

## Part II: Summary

Part II: Joint design with ML



## Joint design with data-driven techniques can bring out best in both systems



## ML Optical layer

## **Traditional Vision**

- -Camera captures sharp image
- ML algorithm extracts features to perform inference
- All computation is electronic, consuming energy

## Part III: ML with Optical System

## ML with optical layer

- Optical layer directly extracts features
- Electronic layer uses the features for inference
- -Reduced power consumption

Optical layer can extract features directly that can be used for inference

#### Example 1:

## ASP Vision: Optically Computing the First Layer of CNNs using Angle Sensitive Pixels

Huaijin G. Chen, Suren Jayasuriya, Jiyue Yang, Judy Stephen, Sriram Sivaramakrishnan, Ashok Veeraraghavan, and Alyosha Molnar. "ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels."

*Computer Vision and Pattern Recognition* (CVPR), 2016.

![](_page_54_Picture_5.jpeg)

![](_page_54_Picture_6.jpeg)

## ASP camera as first layer of DNN

![](_page_55_Figure_1.jpeg)

**ASP Vision : Sensor + Deep Learning Co-Design** 

ASP camera has gabor like filters that show up as kernels in many CNNs, eg. AlexNet

## Angle Sensitive Pixels (ASPs)

- ASPs are CMOS image sensors that have two diffraction gratings over photodiodes
- Different oriented/spaced gratings produce different oriented/frequency gabor-like pointspread-functions.

Diffraction Gratings

![](_page_56_Figure_4.jpeg)

![](_page_56_Figure_5.jpeg)

[Wang and Molnar, JSSC 2012] [M. Hirsch et al., ICCP 2014]

## ASP sensors save energy with edge-only digitization

- 90% savings in image sensing
- 90% savings in bandwidth

[A. Wang, S. Sivaramakrishnan, and A. Molnar, CICC 2012]

|                           | Sony (ISSCC 2015)                                        | ASP Image Sensor                                                                                              |  |  |
|---------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| Resolution                | 5256 x 3934 (20M)                                        | 384 x 384 (effective ASP tile<br>resolution: 96 x 64)                                                         |  |  |
| Energy<br>consumption     | Total power: 428 mW<br>No breakdown of power<br>reported | Total Power: 1.8 mW<br>Pixel Array: 300 μW<br>Amplifiers: 900 μW<br>Timing/Addressing: 500 μW<br>ADCs: 100 μW |  |  |
|                           | 340 pJ/frame/pixel                                       | 33 pJ/frame/pixel                                                                                             |  |  |
|                           | 90.2% Energy saving                                      |                                                                                                               |  |  |
|                           | Transmitting the entire image                            | Transmitting only edges                                                                                       |  |  |
| Transmission<br>bandwidth | 1.2 Mbits/frame @<br>384 ×384×8bits                      | 120 Kbits/frame @<br>384×384×8bits                                                                            |  |  |
|                           | 10:1 Compression ratio                                   |                                                                                                               |  |  |
| Capabilities              | 2D image and video capture                               | 2D images and video, edge<br>filtered images, light field<br>information                                      |  |  |

# Results - ASP Vision performs comparably to CNNs on datasets

Performance on Visual Recognition Tasks

![](_page_58_Figure_2.jpeg)

# How many FLOPs can we save by skipping the first layer?

|                          | VGG-M            |                        | NiN                     |                        | LeNet                   |                        |
|--------------------------|------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| # of Conv. Layers        | 8                |                        | 9                       |                        | 4                       |                        |
| Input Image Size         | $224 \times 2$   | $224 \times 3$         | $32 \times 32 \times 3$ |                        | $28 \times 28 \times 1$ |                        |
| # of First Layer Filters | 96<br>(Original) | 12<br>(Prototype)      | 192<br>(Original)       | 12<br>(Prototype)      | 20<br>(Original)        | 12<br>(Prototype)      |
| First Layer Conv. Kernel | 7 × 7 × 96       | $7 \times 7 \times 12$ | $5 \times 5 \times 192$ | $5 \times 5 \times 12$ | $5 \times 5 \times 20$  | $5 \times 5 \times 12$ |
| FLOPS of Fist layer      | 708.0M           | 88.5 M                 | 14.75M                  | 921.6K                 | 392 K                   | 235 K                  |
| Total FLOPS              | 6.02G            | 3.83 G                 | 200.3M                  | 157 M                  | 10.4 M                  | 8.8 M                  |
| First Layer FLOPS Saving | 11.76%           | 2.3%                   | 7.36%                   | 0.6%                   | 3.77%                   | 2.67%                  |

## Example 2: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification

Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and Gordon Wetzstein.

"Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification." *Scientific reports* (2018).

## Hybrid optical-electronic CNN

![](_page_61_Figure_1.jpeg)

Phase mask in Fourier plane to generate **learned** convolution filters

Chang et. al., Scientific Reports, 2018

## **4F Optical system**

![](_page_62_Picture_1.jpeg)

![](_page_62_Picture_2.jpeg)

![](_page_62_Picture_3.jpeg)

![](_page_62_Picture_4.jpeg)

= 500 μm

![](_page_62_Picture_5.jpeg)

![](_page_62_Picture_6.jpeg)

— 500 μm

![](_page_62_Picture_8.jpeg)

\_\_\_\_\_ 2 mm

![](_page_62_Picture_9.jpeg)

chang et. ul., Scientific Reports, 2018

## Results – CIFAR 10 classification

|                                              | Test accuracy        | Learned parameters | FLOPs              |  |  |
|----------------------------------------------|----------------------|--------------------|--------------------|--|--|
| Method                                       | mean $\pm$ std. dev. | optical/electronic | optical/electronic |  |  |
| Simulation:                                  |                      |                    |                    |  |  |
| fully connected (FC) only                    | $29.8 \pm 0.5\%$     | -/10,250           | -/20,480           |  |  |
| digital conv > ReLU > FC, unconstrained      | $51.9 \pm 1.3\%$     | -/82,586           | -/1,490,954        |  |  |
| digital conv > ReLU > FC, nonnegative        | $36.3 \pm 0.5\%$     | -/82,586           | -/1,490,954        |  |  |
| digital conv $>$ ReLU $>$ FC, pseudonegative | $51.8 \pm 0.6\%$     | -/83,234           | -/2,818,058        |  |  |
| optical conv > ReLU > FC, pseudonegative     | $51.0 \pm 1.4\%$     | 104,976/81,938     | 3,779,136/180,234  |  |  |
| Physical experiment:                         |                      |                    |                    |  |  |
| optical conv > ReLU > FC, pseudonegative     | 44.4%                | -/81,938           | -/180,234          |  |  |
|                                              |                      | -                  | -                  |  |  |

2x classification accuracy for same power

Only 12% of FLOPs for same accuracy

Chang et. al., Scientific Reports, 2018

## Example 3: All-optical machine learning using diffractive deep neural networks

Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi, and Aydogan Ozcan. "All-optical machine learning using diffractive deep neural networks." *Science* (2018)

## All Diffractive Optical System

![](_page_65_Figure_1.jpeg)

![](_page_65_Figure_2.jpeg)

## Diffractive layers interacting with input coherent field

Lin *et. al.*, Science, 2018

## Learned diffractive masks

#### Phase mask profiles

![](_page_66_Figure_2.jpeg)

![](_page_66_Picture_3.jpeg)

![](_page_66_Picture_4.jpeg)

Lin *et. al.*, Science, 2018

## **Results – Classification accuracy**

#### MNIST classification

![](_page_67_Figure_2.jpeg)

#### Fashion-MNIST classification

A

![](_page_67_Figure_4.jpeg)

## Part III: Summary

Part III: ML with Optical System

![](_page_68_Figure_2.jpeg)

Incorporating optical layer(s) into machine learning system can decrease latency and power

## Summary: Visual Sensing using Machine Learning

![](_page_69_Figure_1.jpeg)

![](_page_69_Figure_2.jpeg)