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Graphics in Computational Imaging
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- The Plenoptic Function

1. Generating training and test data
a. Examples in the literature
b. Graphics 101
c. Practical considerations

2. Runtime solution (analysis by synthesis)
a. Differentiable Rendering
b. Ongoing research / examples



Why Render?

Large amounts of real data with sufficient variation is difficult to collect
Rare events may be under-represented in dataset

Leverage well understood imaging physics as prior knowledge

Introduce interpretable constraints on the underlying world representation



What can we render?

Optical Phenomena (Computational Imaging):

e “Photorealistic” Geometrical Optics

o Path-tracing
o Physically Based Materials
o Camera/Film Models

e \olumetric Scattering (“Participating Media”)
e Transient Images: Time of Flight

Other Physics:

Seismic, Acoustic, E&M: Wave equation solvers or approximation



Example: Domain Randomization

Tremblay, Prakash, Acuna, Brophy. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, CVPR Workshops, 2018.



Example: Domain Randomization + Photorealistic

domain randomized photorealistic

J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox & S. Birchfield. Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects. Proceedings of The 2nd Conference on Robot Learning, in PMLR, 2018.



Example: Using Simulation and Domain Adaptation for Deep Robotic Grasping
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K. Bousmalis, A. Irpan, P. Wohlhart, et al. Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping. ICRA, 2018.



Example: Synthetic Data with Domain Adaptation for Monocular Depth

Real

A. Atapour-Abarghouei and T. Breckton. Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer. CVPR, 2018.

» Synthetic



Example: Adapting Simulation Randomization
[ RL —Pp(§)—  simopt } .....

| sim distribution

H
P
S

imulation

Training

*Note: Physics Simulation
rather than synthetic input
image.

[ D(rg?, 788y oo

Y. Chebotar et al. Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience. ICRA, 2019.
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Example: Classification through Scattering

Target Measurement Frames

1 2 3 4 5 6

Raw Data

Synthetic
ex. 1

Synthetic
ex. 2

a) Training b) In the Wild

Randomly Sample sNyngm_uc
Scene Properties o HNoise
‘ Raw Data
Compute MCMC
Forward Model 3¢ 5 Synthetic
T A E ex. 1
5 ¥ ex. 2
Train CNN - - Time Resolved Synthetic

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar. Object classification through scattering media with deep learning on time resolved
measurement. Optics Express, 2017.
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Example: Classification through Scattering

Calibration parameters
Laser
- Incident position Lp ~U(-4,4)cm
Diffuser
- Scattering profile Dp ~N(0,0),0 ~U(0.8,1.2)rad
Camera
- Position Cp ~U(-1.5,1.5)cm
- Time resolution Crr ~N,0),0 ~56+U(-5,5)ps
- Time jitter Crs ~U(0,3 % 56)ps
- Field of view Cry ~U(0.1,0.2)rad
- Homography Normal distributions
Noise
- Dark count Npe ~ U(3000,9000) photons
Target parameters
- Position Tp, .~ U(-4,4)cm
- Scale Ts ~ U(18,30)cm

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar. Object classification through scattering media with deep learning on time resolved

measurement. Optics Express, 2017.
12



Industry

DeepVisionData
synthetictrainingdata.com
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Self-driving Car Simulators

CARLA

NVIDIA DRIVE Constellation
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Popular Rendering Tools

General Purpose

- Path Tracing: mitsuba / PBRT, Blender Cycles
- Raster / Realtime: unreal Engine, Unity3D

Frameworks and Pipelines for Reinforcement Learning and Robotics

- Gazebo Sim (OSRF / ROS) - Also for interactive / physics simulation

OpenAl Gym (various renderers)
- Games (e.g. GTAS)

15



Mitsuba

16
mitsuba-renderer.org




Blender Cycles

F

Check! - Ron Shaver

https://www.artstation.com/
artwork/r3E8e 17



https://www.artstation.com/artwork/r3E8e
https://www.artstation.com/artwork/r3E8e

Gazebo Sim

htt://azebosim.or/8


http://gazebosim.org/

Renderers in Film Production

Generally, the trend for photorealism is to use physically based rendering
ACM Transactions on Graphics (TOG) - Special Issue On Production Rendering, 2018

Manuka
L. Fascione, et al. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production.

Hyperion
B. Burley, et al. The Design and Evolution of Disney’s Hyperion Renderer.

Arnold/Sony Imageworks Arnold
I. Georgiev, et al. Arnold: A Brute-Force Production Path Tracer.

C. Kulla, et al. Sony Pictures Imageworks Arnold.

RenderMan
P. Christensen, et al. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering.

19



Arnold: Brute-force Production Path Tracer

“Maya” copyright SSE, VFX by The Mill, 2015.
20

I. Georgiev, et al. Arnold: A Brute-Force Production Path Tracer, ACM Transactions on Graphics (TOG), 2018.



Graphics 101

Image

Camera / 8 Light Source
ty 5 View Ray

Shadow Ray

Scene Object

Image by Henrik: https://commons.wikimedia.org/wiki/User:Henrik 21



https://commons.wikimedia.org/wiki/User:Henrik

Graphics 101: Rendering Equation and Plenoptic Function
The Rendering Equation
Lo(X, wo, A, t) = Le(x, wo, A, t) + / fr(x, wi, wo, A, t) Li (X, wi, A, t) (w; - n) dwj
Q

Rendering: How to integrate?
~ 9)

The Plenoptic Function /\\
I,(x,y) = / / / / I;(x,y,0,9,4,p,t,n)
Qy Ja Jp Jt zn: X

Computational Imaging: Use knowledge of optical transport

\

Wikimedia: Timrb 22



Graphics 101: Rendering Approximations

Rasterization: Real-time rendering

e Almost all games / interactive applications

Radiosity: Global lllumination

e Finite Element method to calculate steady state global illumination (diffuse paths)

Photon Mapping: Global lllumination / Caustics

e  Popular for special cases, approximates rendering equation (but can be biased)
e Decouple illumination and geometry terms of the rendering equation http://archvizcamp.comivray-pool-water-caustics/

Path-Tracing: Sampling method to estimate integral in rendering equation

e Physically accurate, but long rendering times
e Necessary to simulate more advanced camera distortions or special optical configurations

23



Graphics 101: Photorealistic Rendering

Trend: the graphics industry is moving to more
physically-based technologies to ensure
consistency and streamline asset creation.

Physically Based Materials: Material BRDF

Geometry: Triangle Mesh

Path-tracing: Rendering Equation Integration

Camera Modeling: noise, lens distortion, depth of - ) LuxCoreRender

f.el d San Pedro Bedroom by Charles Nandeya Ehouman (Sharlybg)
I
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Graphics 101: Lambertian Shading

Lambert Cosine Law

<+>
N N
t t
A |
dA dA

L-N = |N||L|cosa = cos

dL
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Graphics 101: Materials

BRDF : Diffuse + Specular

BSDF: BRDF + BTDF (transmission) /\ \

Cook-Torrance Specular BRDF: \
D - Distribution Function X

F - Fresnel Function
Wikimedia: Timrb
G - Geometry Function
. F(i,hr) G(i, o0, hr) D(hr)
,0,1) = .
fr(i,0,m) 4Ti-n[Jo-n|

Commonly Used Functions:

GGX for D,G, and Shlick for F (dielectric) or Lazanyi (metals). Lambertian for diffuse scattering.

B. Walter, S. R. Marschner, H. Li, K. E. Torrance. Microfacet Models for Refraction through Rough Surfaces. 26
Eurographics, 2007.



Graphics 101: Physically Based Materials

Conservation of energy Lo < Li

Lo(x7 Wo )‘) t) - Le(x) Wo A, t) + / fr(x) Wi, Wo, )" t) Li(x7 Wi, )‘) t) (wi : n) dwi
Q

energy conservation chart shown in linear space

" Y Y XL LXK}

0.0 diffuse and rough face and reflectivity reflective and smooth 1.0

marmoset.co 27



Graphics 101: Microfacet models

shadowing

masking

Images from “Real-Time Rendering, 3™ Edition”, A K Peters 2008

From: Physically-Based Shading Models in Film and Game Production. Siggraph Courses 2010
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Graphics 101: GGX
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B. Walter, S. R. Marschner, H. Li, K. E. Torrance. Microfacet Models for Refraction through Rough Surfaces.
Eurographics, 2007.
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Graphics 101: Physically Based Materials

Physically Meaningful BRDF parameterization

- Roughness
- Metalness
- Albedo

- Normal

www.substance3d.com
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Graphics 101: Meshes

e Geometry

o vertex coordinates + edges =
faces (mesh)

e Textures

o 2D texture mapped to position
inside faces (UV coordinates)

https://fromgray.files.wordpress.com/ZO12/01/uvmap6.ipg\ )


https://fromgray.files.wordpress.com/2012/01/uvmap6.jpg

Graphics 101: Physics

Physics (Geometrical Optics)

Lens

Sensor %

Camera

32



Graphics 101: Principles of Path-tracing

Path Tracing

Sensor

Camera

Frustum

33



Graphics 101: Principles of Path-tracing

Path Tracing

Sensor

Camera

Frustum

34



Graphics 101: Principles of Path-tracing

Path Tracing
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Graphics 101: Principles of Path-tracing

Path Tracing
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Graphics 101 camera Modeling - Focus and Depth of Field

Lens

Camera \

f-stop
(aperture size)

Sensor




Graphics 101 camera Modeling - Focus and Depth of Field

Object appears blurry!

Sensor %

f-stop
(aperture size)
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Graphics 101: Camera Modeling -

Noise

Shot Noise: Poisson ~ N'(4, 1) , where A is the incident photon count

Dark Current: Thermal processes in sensor (poisson)
Read Noise: Structured noise due to read-out electronics

Low level processing can change noise model!
e Quantization
e Demosaicking
e Gamma Correction

Image Sensor Pipeline

Defective  Color Filter Color Ghmia RGB Noise Edge Chioma
i oy Correction Correction o Reduction Enhancgemenl Resampler
Correction  Interpolation Matrix YCrCb P

RGB |

> DPC —L> CFA 532e» CCM 532 y H4» CSC ~EE» Noise K< Enhance [foc»( CRS

lic
driver |
Sensor Gain < 1 AG
Sensor
Exposure « | AE
Control

Foi et al. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-lmage Raw-
Data. Trans Image Processing. 2008.

> A A =y == = == = == e
Image
Statistics
_ (Stats)

v v v v v v System Bus v
oPC CFA ccM | | Gamma | | csc Noise Enhance| | CRS
driver driver driver driver ‘ driver driver driver driver

Image
Statistics driver
AwWB
| Global |
| Contrast |

Embedded Processor

embedded.com / Xilinx
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Graphics 101: Camera Modeling

Fisheye: Barrel Distortion, Chromatic Aberration, Vignetting

Original Image (left) vs. Corrected Image (right)

mathworks.com

40



Graphics 101: More References

Siggraph Rendering Courses: PHYSICALLY BASED
RENDERING
From Theory to Implementation

see: http://renderwonk.com/publications/

PBRT: https://www.pbrt.org/

CS Graphics Courses:

Stanford CS348b http://graphics.stanford.edu/courses/cs348b/

M |T OCW https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/

41


http://renderwonk.com/publications/
https://www.pbrt.org/
http://graphics.stanford.edu/courses/cs348b/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/

Generating Synthetic Data in Practice

Path Tracing / Physically Based

Mitsuba / PBRT: nttps://www.mitsuba-renderer.org/

Blender CyCleS: https://www.blender.org/

Raster/Realtime

Unreal Eng ine: https://www.unrealengine.com/en-US/

Unlty https://unity.com/

Licenses typically free for non-commercial use

42
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Assets: Geometry

1. “Canonical Meshes’’:

: : Stanford Bunny
e Stanford 3D Scanning Repository

o https://graphics.stanford.edu/data/3Dscanrep/
e Cornell Box [1]
e Utah Teapot [2]

2. Create Meshes using 3D Modeling software (e.g. Blender)

Cornell Box

3. Use repository of models (e.g. ShapeNet [3])

Utah Teapot

[1] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Modeling the Interaction of Light Between Diff rf . ACM SIGGRAPH 1984 43
[2] Torrence, Ann. "Martin Newell's original teapot". ACM SIGGRAPH 2006
[3] https://shapenet.org/


https://graphics.stanford.edu/data/3Dscanrep/
http://design.osu.edu/carlson/history/PDFs/goral.pdf

Capturing Assets

Photogrammetry

e Textures
e 3D Geometry

Object Specific Capture

e Digital Humans
(SURREAL Dataset)
Furniture
ShapeNet

SURREAL Dataset

G. Varol et al., Learning from Synthetic Humans. CVPR, 2017.
44



Photogrammetry

= Import
S all photos
with mask
Align
photos
e’
v = 85 : dense coud
120 photos \7
from 3 sides
Nikon D7100
24MP, RAW files .8

evermotion.org

44444444

1111111

‘ /' b Clear F

Import obj
from Agisoft

bugs etc.

Retopo, optimise mesh, &
make UVs X

EVERMOTION

~~~~~~~~~~~~~~~~



Photogrammetry

SUBSTANCE

From ZBrush

= Import,
optimise objects
LOD < 100k polygons

Bake normal, bump, specular, v
displacement maps and all other
/\ that are necesarry

% VAN

/ \Y, J/ Y
Rendering 4 -

3
g
|
i
B
R
-

Process textures,
make them look great

evermotion.org



ShapeNet & o

B U w

cabinet  Club blind bunldmg
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https://shapenet.org/ 47



Machine Learning and Synthetic Data

e “Real” data is almost always preferred
o Rendering is economical in easy to parameterize scenes
o Usually need to write a script to produce samples generatively:
m Textures
m 3D Geometry
m Camera Viewpoints / Intrinsics
e Domain Transfer has been shown to work in some cases
o GAN to translate:
m Synthetic to Real
m Real to Synthetic
e Difficult to learn and model noise
o How does the model access entropy?

48



GPUs are useful beyond training Deep Networks!

Understanding compute architecture can be helpful: Improvements to GPU
memory motivated by graphics workloads (primarily real-time)

CPUs have traditionally been used for offline rendering: Recently, improvements
to hardware and implementations are making use of GPUs advantageous:

- GPUs can be run in parallel on same machine
- Larger bucket sizes than CPU (GPU memory/cache vs. CPU cache)

Typical path-tracing rendering times for typical scenes: ~5 mins to hours, can
reduce to seconds for noise in renders or limiting number of bounces.

49



Practical Considerations

Gamma correction: know your “scene space” from your “display space”

“The Importance of Being Linear”

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3 ch24.html

Renders are fundamentally different: RGB cameras require debayering to get
to a color image, which can introduce tiny artifacts in real camera images.

Rendering with denoising: Many path tracers offer built-in denoising to speed up
render time. Noise statistics of renderers using monte-carlo sampling are different

than image sensors

50


https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch24.html

Gamma Correction

-
4 ™
”~
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8] gamma Lz
correction L7

1 75
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7
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CRT
, |7 0218 gamma
| 2.2
1}
0+ v v v v
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learnopengl.com

Images

www.pyimagesearch.com
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Debayering Artifacts

Grid False Color Water Color

abine Susstr
ast_topics/demosaicing.html

I aia
.
‘ E
s://ivr] .epfl.cn/researc



https://ivrlwww.epfl.ch/research/past_topics/demosaicing.html

Noise Models

https://en.wikipedia.org/wiki/File:Photon-noise.jpg
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Case Study: Machine Learning and Synthetic Data

position
22cm, 29¢m

cm

(M Rendered Data

—~———

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.
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Case Study: Creating Diverse Simulated Data

Blender Sampling Script

1.Generative parameterized
model: p(x, A)

1.Sample and render: p(Xx, y)

1.Learn: p(x | y)

Random Seed:
{“b23336c-24ab”}

Geometry:
Front Corner: x,y
Back Corner: x,y
Ceiling and Floor:

Extrinsic Camera Parameters:

Z, %

Num Random Clutter:

Clutter Pose:

Materials:

Blender Principled BSDF

Albedo:

R,
RI X’ yIZ
Roughness: [0.2,
Uniform:
Random:

Num Targets:

Target Postion: x,

Target Height: z
Target Emmission:

_—

y

[0,1]

lelz

1]
r,g,b

Delaunay
Noise

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.




Case Study: Creating Diverse Simulated Data

Parameterized Geometry

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Creating Diverse Simulated Data

Synthetic Samples

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Trained Model
a o]

/i put to Model \{

T

Ground Truth Measurement

Acm

30 a

-120 .
i

10 <_
L b

Z ¢

Predicted Location Predicted Identity =~ Reconstruction

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Time of Flight Rendering: Monte Carlo

MCX

http://mcx.space/

Mitsuba ToF

https://github.com/cmu-ci-lab/MitsubaToFRenderer

Camera Culture Monte Carlo Renderer

https://github.com/mitmedialab/MonteCarloRender
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https://github.com/mitmedialab/MonteCarloRender

Time of Flight Rendering: Transient Rendering

20 M beams

40 M beams

Steady state

Adrian Jarabo, Julio Marco, Adolfo Munoz, Raul Buisan, Wojciech Jarosz, Diego Gutierrez, A Framework for Transient Rendering. TOG (Siggraph Asia), 2014.
Julio Marco, Ibon Guillén, Wojciech Jarosz, Diego Gutierrez, Adrian Jarabo, Progressive Transient Photon Beams. Computer Graphics Forum, 2019.
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Rendering and Inverse Problems

Analysis by Synthesis: “Rendering Scene Parameters
Engine in our Head”

Transformations

J. Wu, J. B. Tenenbaum, and P. Kohli. Neural Scene De-
rendering, CVPR 2017

Cameras

Differentiable Rendering X @

Lights and Materials

DIRT

Redner

Inverse Transport Networks
Tensorflow Graphics

~
v
~
~
~
~
o
~
~
~
~
e

L«

IDDDDDDDDDDDDDD DD DD DD D)) OO aaeaaaccc«c«

Tensorflow Graphics
Julien Valentin and Sofien Bouaziz



DIRT

differentiable
renderer GoT

pixels
image likelihood | @ 7
loss | -
}’t’ @
latent pose
unannotated & shape
image encoder generative model

() <

vertices

( e single-image
W reconstruction
& w g(
L ey

new shape samples

. 3D meshes

P. Henderson and V. Ferrari. Learning to Generate and Reconstruct 3D Meshes with only 2D Supervision, BMVC 2018.

See Also:
e Loper and Black, ECCV 2014
e Katoetal., CVPR 2018
e Genovaetal.,, CVPR 2018
e Palazzi et al., ECCV Workshops 2018
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Redner

(a) initial guess (b) real photograph  (c) camera gradient (d) table albedo gradient (e) light gradient (f) our fitted result
(per-pixel contribution) (per-pixel contribution) (per-pixel contribution)

4

(a) area sampling (b) edge sampling

Tzu-Mao Li, Miika Aittala, Fredo Durand, Jaakko Lehtinen. Differentiable Monte Carlo Ray Tracing through Edge Sampling, TOG (Siggraph Asia) 2018. 63



Redner

] Il =) o002/016
final

Tzu-Mao Li, Miika Aittala, Fredo Durand, Jaakko Lehtinen. Differentiable Monte Carlo Ray Tracing through Edge Sampling, TOG (Siggraph Asia) 2018. 64




Inverse Transport Networks

Ot
g
image encoder parameters decoder

(a) traditional auto-encoder architecture

B

image

-i-idl-a
A

differentiable renderer image

L]~

image encoder

parameters

(b) proposed encoder-renderer architecture

C. Che, F. Luan, S. Zhao, K. Bala and I. Gkioulekas. Inverse Transport Networks. ArXiv 2018. 65



Beginner

Object pose estimation Camera intrisic optimization

Tensorflow Graphics

Scene Parameters

( Intermediate

Transformations . B-spline and slerp interpolation Reflectance Non-rigid surface deformation

Neural Network m

Rendering

constraints

“

deformed pose

(

<fe

Lights and Materials

Advanced

Spherical harmonics rendering = Environment map optimization

o L

Julien Valentin and Cem Keskin and Pavel Pidlypenskyi and Ameesh Makadia and Avneesh Sud and Sofien Bouaziz. Tensorflow Graphics, 2019.

1tation

v
~
~
~
~
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~
~
~
v
~
~
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https://github.com/tensorflow/graphics
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https://github.com/tensorflow/graphics

Differentiable Graphics

What makes this possible?

Automatic Differentiation Frameworks!

https://autodiff.github.io/

autodiff

automatic differentiation in C++ couldn't be simpler

Forward Mode

dual x, y, z;

dual u = £(x, y, z);

double dudx = derivative(f, wrt(x), x, ¥y, 2Z);
double dudy = derivative(f, wrt(y), x, y, Z);
double dudz = derivative(f, wrt(z), x, y, z);

Reverse Mode

var X, y, z;
var u = £(x, y, z);

Derivatives dud = derivatives(u);
double dudx = dud(x);

double dudy = dud(y);

double dudz = dud(z);
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https://autodiff.github.io/

What else could we model?

Wave Optics: Coherence (e.g. diffraction,
microscopy)

Light Field: Render many shifted pinhole
cameras across camera aperture

Fluorescence: Materials that absorb light and
emit in a longer wavelength

Non-linear Effects: Two-photon Microscopy

T. Cuypers, T. Haber, P. Bekaert, Se Baek Oh, R. Raskar, Reflectance model for diffraction. ACM Trans. Graphics (TOG), 2012.
T. Cuypers, R. Horstmeyer, Se Baek Oh, P. Bekaert, R. Raskar, Validity of Wigner Distribution Function for ray-based imaging. ICCP, 2011.
Se Baek Oh and R. Raskarl, Rendering Wave Effects with Augmented Light Field. Eurographics, 2010.
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Summary

e Graphics is useful for creating training and test data

o Particularly when real data is expensive to collect
o Relevant problem for domain adaptation and transfer learning

e Physically Based Rendering (and photorealism) is is achievable with easily
accessible tools
o And increasing availability of datasets

e Computer Vision + Graphics is an exciting frontier!
o Differentiable Rendering promises to close the loop
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