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Data-Driven Computational Imaging
Time Title Presenter

08:30 – 08:50 Introduction to Computational Imaging Guy Satat (MIT)

08:50 – 09:15 Data-Driven Computational Imaging Survey Tristan Swedish (MIT)

09:15 – 10:00 Data-Driven Non-line-of-sight Imaging and 3D Reconstruction Guy Satat (MIT)

10:00 – 10:20 Break

10:20 – 11:00 Rendering and Simulation for Data-Driven Computational Imaging Tristan Swedish (MIT)

11:00 – 12:00 Visual Sensing Using Machine Learning Vivek Boominathan (Rice),  
Ashok Veeraraghavan (Rice)

ciml.media.mit.edu
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Graphics in Computational Imaging

1. Generating training and test data 
a. Examples in the literature 
b. Graphics 101 
c. Practical considerations 

2. Runtime solution (analysis by synthesis) 
a. Differentiable Rendering 
b. Ongoing research / examples
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- The Plenoptic Function



Why Render?

● Large amounts of real data with sufficient variation is difficult to collect 
● Rare events may be under-represented in dataset 
● Leverage well understood imaging physics as prior knowledge 
● Introduce interpretable constraints on the underlying world representation
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What can we render?

Optical Phenomena (Computational Imaging): 

● “Photorealistic” Geometrical Optics 
○ Path-tracing 
○ Physically Based Materials 
○ Camera/Film Models 

● Volumetric Scattering (“Participating Media”) 
● Transient Images: Time of Flight 

Other Physics: 

 Seismic, Acoustic, E&M: Wave equation solvers or approximation
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Example: Domain Randomization

Tremblay, Prakash, Acuna, Brophy. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, CVPR Workshops, 2018.
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Example: Domain Randomization + Photorealistic

 J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox & S. Birchfield. Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects. Proceedings of The 2nd Conference on Robot Learning, in PMLR, 2018.
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Example: Using Simulation and Domain Adaptation for Deep Robotic Grasping 

K. Bousmalis, A. Irpan, P. Wohlhart, et al. Using  Simulation  and  Domain  Adaptation  to  Improve Efficiency  of  Deep  Robotic  Grasping. ICRA, 2018.

Synthetic          Real
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Example: Synthetic Data with Domain Adaptation for Monocular Depth

A. Atapour-Abarghouei and T. Breckton. Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer. CVPR, 2018. 

Real          Synthetic
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Example: Adapting Simulation Randomization

Y. Chebotar et al. Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience. ICRA, 2019. 

*Note: Physics Simulation 
rather than synthetic input 
image.
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Example: Classification through Scattering

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar. Object classification through scattering media with deep learning on time resolved 
measurement. Optics Express, 2017.
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Example: Classification through Scattering

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar. Object classification through scattering media with deep learning on time resolved 
measurement. Optics Express, 2017.
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Industry

DeepVisionData 
synthetictrainingdata.com
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Self-driving Car Simulators

CARLA NVIDIA DRIVE Constellation
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Popular Rendering Tools 

General Purpose 

- Path Tracing: Mitsuba / PBRT, Blender Cycles 

- Raster / Realtime: Unreal Engine, Unity3D 

Frameworks and Pipelines for Reinforcement Learning and Robotics 

- Gazebo Sim (OSRF / ROS) - Also for interactive / physics simulation 

- OpenAI Gym (various renderers) 
- Games (e.g. GTA5)
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Mitsuba

mitsuba-renderer.org
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Blender Cycles

Check! - Ron Shaver 
https://www.artstation.com/
artwork/r3E8e !17

https://www.artstation.com/artwork/r3E8e
https://www.artstation.com/artwork/r3E8e


Gazebo Sim

http://gazebosim.org/!18

http://gazebosim.org/


Renderers in Film Production

Generally, the trend for photorealism is to use physically based rendering  

ACM Transactions on Graphics (TOG) - Special Issue On Production Rendering, 2018 

Manuka  
L. Fascione, et al. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production. 

Hyperion 
B. Burley, et al. The Design and Evolution of Disney’s Hyperion Renderer. 

Arnold/Sony Imageworks Arnold 
I. Georgiev, et al. Arnold: A Brute-Force Production Path Tracer. 
C. Kulla, et al. Sony Pictures Imageworks Arnold. 

RenderMan  
P. Christensen, et al. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering.
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Arnold: Brute-force Production Path Tracer

“Maya” copyright SSE, VFX by The Mill, 2015.

I. Georgiev, et al. Arnold: A Brute-Force Production Path Tracer, ACM Transactions on Graphics (TOG), 2018.
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Graphics 101

Image by Henrik: https://commons.wikimedia.org/wiki/User:Henrik !21

https://commons.wikimedia.org/wiki/User:Henrik


Graphics 101: Rendering Equation and Plenoptic Function

The Rendering Equation 

Rendering: How to integrate? 

The Plenoptic Function 

Computational Imaging: Use knowledge of optical transport

Wikimedia: Timrb !22



Graphics 101: Rendering Approximations
Rasterization: Real-time rendering 

● Almost all games / interactive applications 

Radiosity: Global Illumination 

● Finite Element method to calculate steady state global illumination (diffuse paths) 

Photon Mapping: Global Illumination / Caustics 

● Popular for special cases, approximates rendering equation (but can be biased) 
● Decouple illumination and geometry terms of the rendering equation 

Path-Tracing: Sampling method to estimate integral in rendering equation 

● Physically accurate, but long rendering times 
● Necessary to simulate more advanced camera distortions or special optical configurations

http://archvizcamp.com/vray-pool-water-caustics/
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Graphics 101: Photorealistic Rendering

Trend: the graphics industry is moving to more 
physically-based technologies to ensure 
consistency and streamline asset creation. 

 
Physically Based Materials: Material BRDF 

Geometry: Triangle Mesh 

Path-tracing: Rendering Equation Integration 

Camera Modeling: noise, lens distortion, depth of 
field

LuxCoreRender 
San Pedro Bedroom by Charles Nandeya Ehouman (Sharlybg) 
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Graphics 101: Lambertian Shading

Lambert Cosine Law
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Graphics 101: Materials
BRDF : Diffuse + Specular 
BSDF: BRDF + BTDF (transmission) 

Cook-Torrance Specular BRDF: 

D - Distribution Function 

F - Fresnel Function 

G - Geometry Function 

Commonly Used Functions:  

GGX for D,G, and Shlick for F (dielectric) or Lazanyi (metals). Lambertian for diffuse scattering.

Wikimedia: Timrb

!26B. Walter, S. R. Marschner, H. Li, K. E. Torrance. Microfacet Models for Refraction through Rough Surfaces. 
Eurographics, 2007. 



Graphics 101: Physically Based Materials

Conservation of energy

marmoset.co !27



Graphics 101: Microfacet models

From: Physically-Based Shading Models in Film and Game Production. Siggraph Courses 2010 
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Graphics 101: GGX

!29
B. Walter, S. R. Marschner, H. Li, K. E. Torrance. Microfacet Models for Refraction through Rough Surfaces. 
Eurographics, 2007. 



Graphics 101: Physically Based Materials

Physically Meaningful BRDF parameterization 

- Roughness 
- Metalness 
- Albedo 
- Normal

www.substance3d.com
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Graphics 101: Meshes

● Geometry  

○ vertex coordinates + edges = 
faces (mesh) 

● Textures  

○ 2D texture mapped to position 
inside faces (UV coordinates)

https://fromgray.files.wordpress.com/2012/01/uvmap6.jpg
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https://fromgray.files.wordpress.com/2012/01/uvmap6.jpg


Graphics 101: Physics

Camera

Physics (Geometrical Optics)

Sensor

Lens
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Graphics 101: Principles of Path-tracing

Camera
Frustum

Path Tracing

Sensor
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Graphics 101: Principles of Path-tracing

Camera
Frustum

Path Tracing

Sensor
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Graphics 101: Principles of Path-tracing

Camera
Frustum

Path Tracing

Sensor
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Graphics 101: Principles of Path-tracing

Camera
Frustum

Path Tracing

Sensor
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Graphics 101: Camera Modeling - Focus and Depth of Field

Camera

Sensor

Lens

f-stop 
(aperture size)
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Graphics 101: Camera Modeling - Focus and Depth of Field

Camera

Sensor

Lens

f-stop 
(aperture size)

Object appears blurry!
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Graphics 101: Camera Modeling - Noise

Shot Noise: Poisson ~                  , where 𝞴 is the incident photon count          
Dark Current: Thermal processes in sensor (poisson) 
Read Noise: Structured noise due to read-out electronics 

Low level processing can change noise model! 
● Quantization 
● Demosaicking 
● Gamma Correction

embedded.com / Xilinx

Foi et al. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-
Data. Trans Image Processing. 2008. 
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Graphics 101: Camera Modeling

Fisheye: Barrel Distortion, Chromatic Aberration, Vignetting

mathworks.com !40



Graphics 101: More References

!41

Siggraph Rendering Courses: 

see: http://renderwonk.com/publications/ 

PBRT: https://www.pbrt.org/  

CS Graphics Courses: 

Stanford CS348b: http://graphics.stanford.edu/courses/cs348b/ 

MIT OCW: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/

http://renderwonk.com/publications/
https://www.pbrt.org/
http://graphics.stanford.edu/courses/cs348b/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/


Generating Synthetic Data in Practice

Path Tracing / Physically Based 

Mitsuba / PBRT: https://www.mitsuba-renderer.org/ 

Blender Cycles: https://www.blender.org/ 

Raster/Realtime 

Unreal Engine: https://www.unrealengine.com/en-US/ 

Unity: https://unity.com/ 

Licenses typically free for non-commercial use
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https://www.mitsuba-renderer.org/
https://www.blender.org/
https://www.unrealengine.com/en-US/
https://unity.com/


Assets: Geometry

1. “Canonical Meshes”:  

● Stanford 3D Scanning Repository  
○ https://graphics.stanford.edu/data/3Dscanrep/ 

● Cornell Box [1] 
● Utah Teapot [2] 

2. Create Meshes using 3D Modeling software (e.g. Blender) 

3. Use repository of models (e.g. ShapeNet [3])

Stanford Bunny

Cornell Box

Utah Teapot
[1] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Modeling the Interaction of Light Between Diffuse Surfaces. ACM SIGGRAPH 1984 
[2] Torrence, Ann. "Martin Newell's original teapot". ACM SIGGRAPH 2006 
[3] https://shapenet.org/
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https://graphics.stanford.edu/data/3Dscanrep/
http://design.osu.edu/carlson/history/PDFs/goral.pdf


Capturing Assets

Photogrammetry 

● Textures 
● 3D Geometry 

Object Specific Capture  

● Digital Humans 
(SURREAL Dataset) 

● Furniture 
● ShapeNet

G. Varol et al., Learning from Synthetic Humans. CVPR, 2017.
SURREAL Dataset
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Photogrammetry

evermotion.org !45



Photogrammetry

evermotion.org !46



ShapeNet

https://shapenet.org/ !47



Machine Learning and Synthetic Data

● “Real” data is almost always preferred 
○ Rendering is economical in easy to parameterize scenes 
○ Usually need to write a script to produce samples generatively: 

■ Textures 
■ 3D Geometry 
■ Camera Viewpoints / Intrinsics 

● Domain Transfer has been shown to work in some cases 
○ GAN to translate: 

■ Synthetic to Real 
■ Real to Synthetic 

● Difficult to learn and model noise 
○ How does the model access entropy?

!48



GPUs are useful beyond training Deep Networks!

Understanding compute architecture can be helpful: Improvements to GPU 
memory motivated by graphics workloads (primarily real-time) 

CPUs have traditionally been used for offline rendering: Recently, improvements 
to hardware and implementations are making use of GPUs advantageous: 

- GPUs can be run in parallel on same machine 
- Larger bucket sizes than CPU (GPU memory/cache vs. CPU cache) 

Typical path-tracing rendering times for typical scenes: ~5 mins to hours, can 
reduce to seconds for noise in renders or limiting number of bounces.
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Practical Considerations

Gamma correction: know your “scene space” from your “display space”  

“The Importance of Being Linear” 

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch24.html 

Renders are fundamentally different: RGB cameras require debayering to get 
to a color image, which can introduce tiny artifacts in real camera images. 

Rendering with denoising: Many path tracers offer built-in denoising to speed up 
render time. Noise statistics of renderers using monte-carlo sampling are different 
than image sensors
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https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch24.html


Gamma Correction

www.pyimagesearch.com
learnopengl.com
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Debayering Artifacts

Sabine Süsstrunk 
https://ivrlwww.epfl.ch/research/past_topics/demosaicing.html

Raw Blurring Grid False Color Water Color
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https://ivrlwww.epfl.ch/research/past_topics/demosaicing.html


Noise Models
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Case Study: Machine Learning and Synthetic Data

!54
Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Creating Diverse Simulated Data

1.Generative parameterized 
model: p(x, A) 

1.Sample and render: p(x, y) 

1.Learn: p(x | y)

Random Seed: 
{“b23336c-24ab”}

Geometry: 
Front Corner: x,y 
Back Corner: x,y 
Ceiling and Floor: z, z 
Extrinsic Camera Parameters: R,x,y,z 
Num Random Clutter: 
 Clutter Pose: R, x,y,z 

Materials: 
 Blender Principled BSDF 
  Roughness: [0.2, 1] 
  Albedo: 
   Uniform: r,g,b 
   Random: 
    Delaunay 
    Noise 

Num Targets: 
Target Postion: x,y 
Target Height: z 
Target Emmission: [0,1] 

Blender Sampling Script

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Creating Diverse Simulated Data

Parameterized Geometry
Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Creating Diverse Simulated Data

Synthetic Samples
Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Case Study: Trained Model

Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.



Time of Flight Rendering: Monte Carlo

MCX 
http://mcx.space/ 

Mitsuba ToF 
https://github.com/cmu-ci-lab/MitsubaToFRenderer 

Camera Culture Monte Carlo Renderer  
https://github.com/mitmedialab/MonteCarloRender

!59

http://mcx.space/
https://github.com/cmu-ci-lab/MitsubaToFRenderer
https://github.com/mitmedialab/MonteCarloRender


Time of Flight Rendering: Transient Rendering

Adrian Jarabo, Julio Marco, Adolfo Munoz, Raul Buisan, Wojciech Jarosz, Diego Gutierrez, A Framework for Transient Rendering. TOG (Siggraph Asia), 2014. 
Julio Marco, Ibón Guillén, Wojciech Jarosz, Diego Gutierrez, Adrian Jarabo, Progressive Transient Photon Beams. Computer Graphics Forum, 2019.
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Rendering and Inverse Problems

Analysis by Synthesis: “Rendering 
Engine in our Head” 

J. Wu, J. B. Tenenbaum, and P. Kohli. Neural Scene De-
rendering, CVPR 2017 

Differentiable Rendering 

● DIRT 
● Redner 
● Inverse Transport Networks 
● Tensorflow Graphics

Tensorflow Graphics 
Julien Valentin and Sofien Bouaziz !61



DIRT

 P. Henderson and V. Ferrari. Learning to Generate and Reconstruct 3D Meshes with only 2D Supervision, BMVC 2018.

See Also:  
● Loper and Black, ECCV 2014 
● Kato et al., CVPR 2018 
● Genova et al., CVPR 2018 
● Palazzi et al., ECCV Workshops 2018 !62



Redner

Tzu-Mao Li, Miika Aittala, Fredo Durand, Jaakko Lehtinen. Differentiable Monte Carlo Ray Tracing through Edge Sampling, TOG (Siggraph Asia) 2018. !63



Redner

Tzu-Mao Li, Miika Aittala, Fredo Durand, Jaakko Lehtinen. Differentiable Monte Carlo Ray Tracing through Edge Sampling, TOG (Siggraph Asia) 2018.

target init

final
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Inverse Transport Networks

C. Che, F. Luan, S. Zhao, K. Bala and I. Gkioulekas. Inverse Transport Networks. ArXiv 2018. !65



Tensorflow Graphics

Julien Valentin and Cem Keskin and Pavel Pidlypenskyi and Ameesh Makadia and Avneesh Sud and Sofien Bouaziz. Tensorflow Graphics, 2019.

https://github.com/tensorflow/graphics
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https://github.com/tensorflow/graphics


Differentiable Graphics

What makes this possible? 

Automatic Differentiation Frameworks!   

https://autodiff.github.io/
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https://autodiff.github.io/


What else could we model?

Wave Optics: Coherence (e.g. diffraction, 
microscopy) 

Light Field: Render many shifted pinhole 
cameras across camera aperture 

Fluorescence: Materials that absorb light and 
emit in a longer wavelength 

Non-linear Effects: Two-photon Microscopy

T. Cuypers, T. Haber, P. Bekaert, Se Baek Oh, R. Raskar, Reflectance model for diffraction. ACM Trans. Graphics (TOG), 2012. 
T. Cuypers, R. Horstmeyer, Se Baek Oh, P. Bekaert, R. Raskar, Validity of Wigner Distribution Function for ray-based imaging. ICCP, 2011. 
Se Baek Oh and R. Raskarl, Rendering Wave Effects with Augmented Light Field. Eurographics, 2010. !68



Summary

● Graphics is useful for creating training and test data 
○ Particularly when real data is expensive to collect 
○ Relevant problem for domain adaptation and transfer learning 

● Physically Based Rendering (and photorealism) is is achievable with easily 
accessible tools 
○ And increasing availability of datasets 

● Computer Vision + Graphics is an exciting frontier! 
○ Differentiable Rendering promises to close the loop
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