Data Driven Computational Imaging Survey

Tristan Swedish CVPR Tutorial

ciml.media.mit.edu

Data-Driven Computational Imaging			Õ»
Time	Title	Presenter	
08:30 - 08:50	Introduction to Computational Imaging	Guy Satat (MIT)	
08:50 - 09:15	Data-Driven Computational Imaging Survey	Tristan Swedish (MIT)	
09:15 - 10:00	Data-Driven Non-line-of-sight Imaging and 3D Reconstruction	Guy Satat (MIT)	
10:00 - 10:20	Break		
10:20 - 11:00	Rendering and Simulation for Data-Driven Computational Imaging	Tristan Swedish (MIT)	
11:00 - 12:00	Visual Sensing Using Machine Learning	Vivek Boominathan (Rice) Ashok Veeraraghavan (Ric	

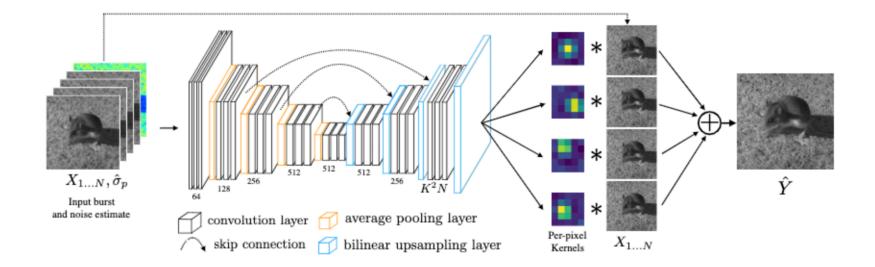
Overview

Computational Imaging is Diverse:

- Low-level Processing (Denoising and Demosaicking)
- 3D Imaging
- Lensless, Speckle, Scattering
- Non-line-of-sight
- Imaging System Design
- Tomography and Deconvolution
- Microscopy

Low Level Processing (de-noising, de-mosaicking)

Burst Denoising with Kernel Prediction Networks



B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, R. Carroll. Burst Denoising with Kernel Prediction Networks. CVPR, 2018.

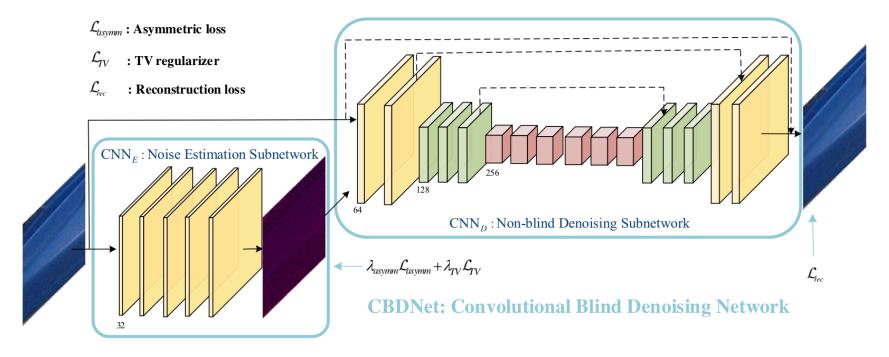
Noise2Noise

p = 0.22 p = 0.81

Example training pairs

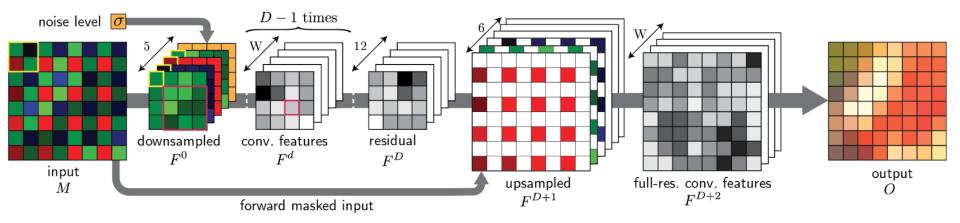
Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, Timo Aila. *Noise2Noise: Learning Image Restoration without Clean Data*. ICML, 2018.

Toward Convolutional Blind Denoising of Real Photographs



S. Guo, Z. Yan, K. Zhang, W. Zuo and L. Zhang. *Towards Convolutional Blind Denoising of Real Photographs*. CVPR, 2019.

Deep Joint Demosiacking and Denoising



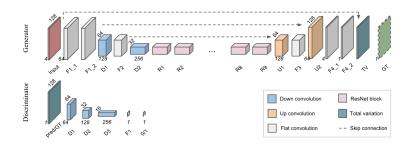
Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, Frédo Durand. Deep joint demosaicking and denoising. Trans. on Graphics (TOG), 2016.

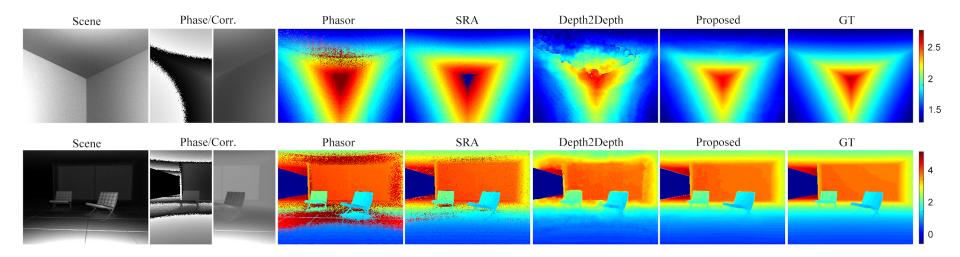
Deep Joint Demosiacking and Denoising

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, Frédo Durand. Deep joint demosaicking and denoising. ACM Trans. on Graphics (TOG), 2016.

3D Imaging

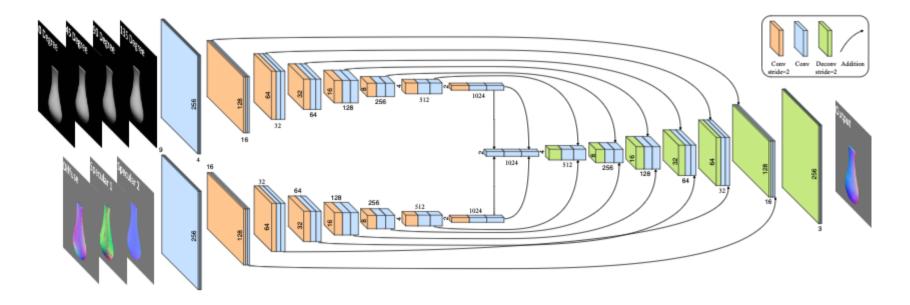
Deep End-to-End ToF Imaging





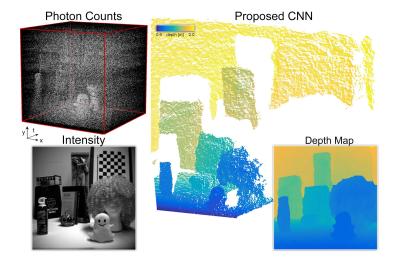
Shuochen Su, Felix Heide, Gordon Wetzstein, Wolfgang Heidrich. Deep End-to-End ToF Imaging. CVPR, 2018.

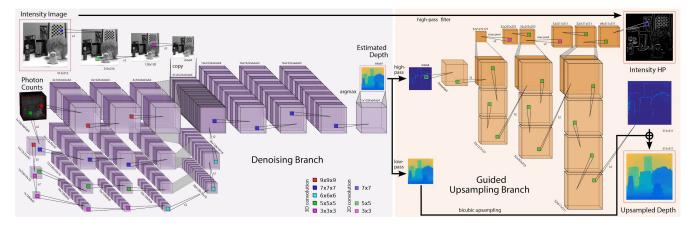
Physics Based Neural Network for Shape from Polarization



Yunhao Ba, Rui Chen, Yiqin Wang, Lei Yan, Boxin Shi, Achuta Kadambi. *Physics-based Neural Networks for Shape from Polarization*. Arxiv, 2019.

Single Photon 3D Imaging

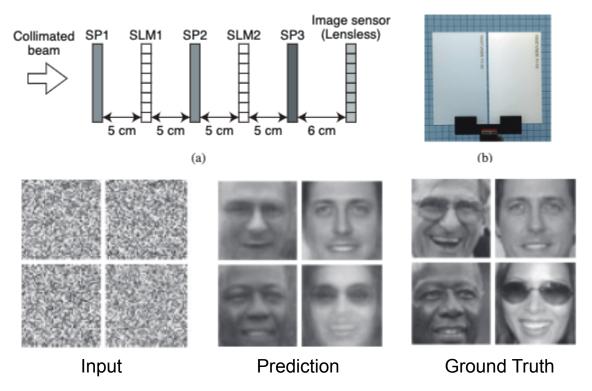




David B. Lindell, Matthew O'Toole, and Gordon Wetzstein. Single-Photon 3D Imaging with Deep Sensor Fusion. ACM Trans. Graph., 2018.

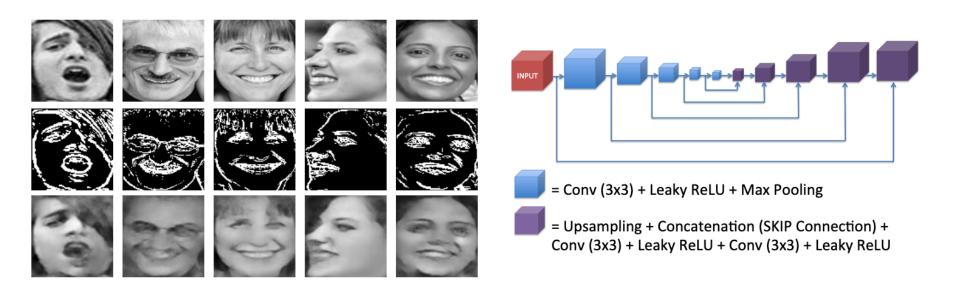
Lensless, Speckle, Scattering

Learning Based Imaging through Scattering Media



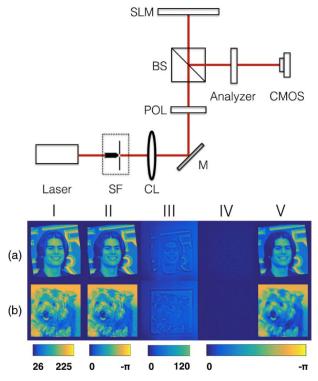
Ryoichi Horisaki, Ryosuke Takagi, and Jun Tanida. Learning-based imaging through scattering media. Optics Express, 2016. 15

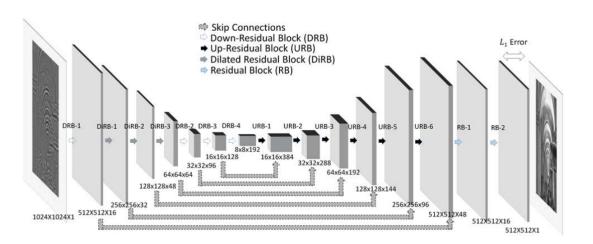
Reconstructing Intensity from Binary Spatial Gradient Cameras



Suren Jayasuriya, Orazio Gallo, Jinwei Gu, Timo Aila, Jan Kautz. *Reconstructing Intensity Images from Binary Spatial Gradient Cameras*. CVPR, 2017.

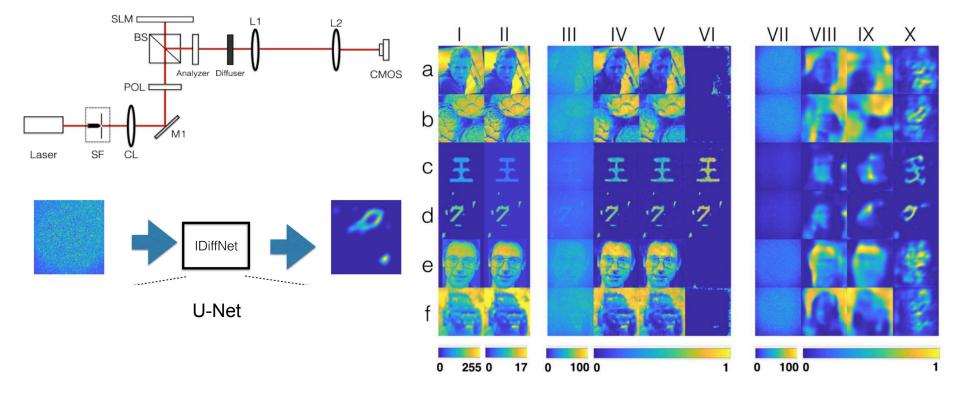
Lensless Computational Imaging through Deep Learning





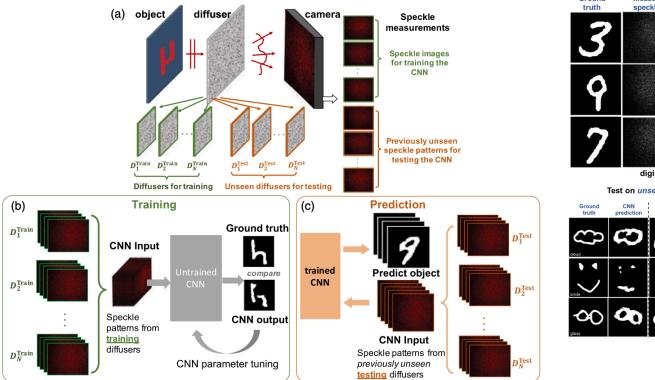
Ayan Sinha, Justin Lee, Shuai Li, and George Barbastathis. *Lensless computational imaging through deep learning*. Optica, 17 2017.

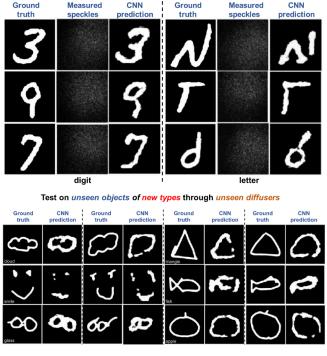
Imaging through glass diffusers using densely connected CNNs



S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis. *Imaging through glass diffusers using densely connected convolutional* 18 *neural networks*. Optica, 2018.

Deep speckle correlation

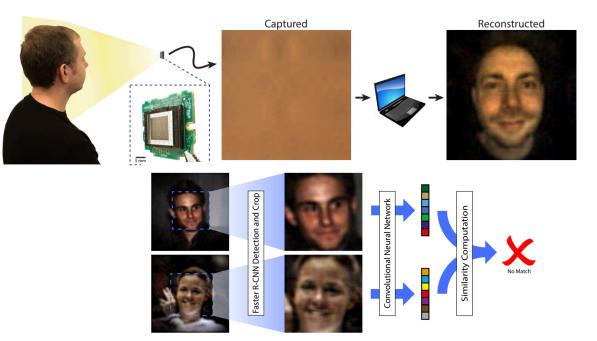




Test on unseen objects of the same type through unseen diffusers

Y. Li, Y. Xue, L. Tian. *Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media.* 19 Optica, 2018.

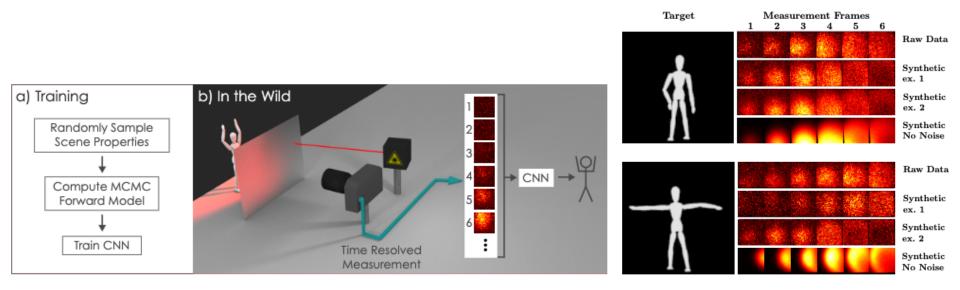
Face Detection and Verification Using Lensless Cameras



J. Tan, L. Niu, J. K. Adams, V. Boominathan, J. T. Robinson, R. G. Baraniuk, and A. Veeraraghavan. *Face Detection and Verification Using Lensless Cameras*. IEEE Trans Comp Imaging, 2018.

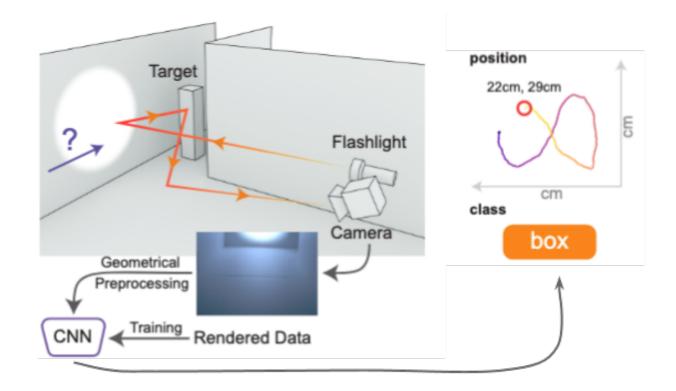
Non-line-of-sight

Classification through Scattering



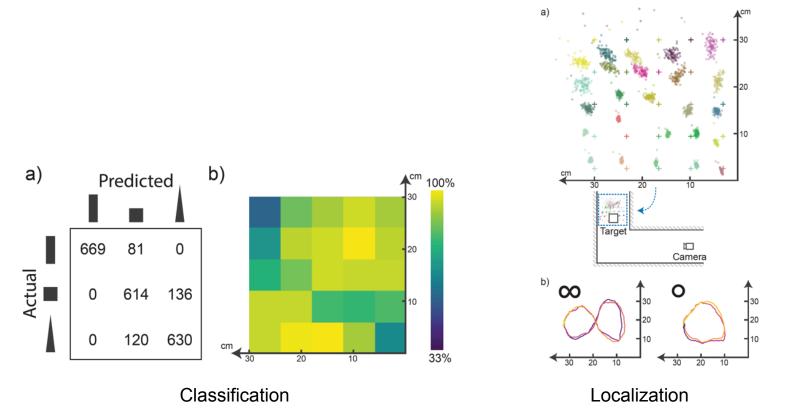
Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar. *Object classification through scattering media with deep learning on time resolved measurement*. Optics Express, 2017.

Flash Photography for Data-driven Hidden Scene Recovery



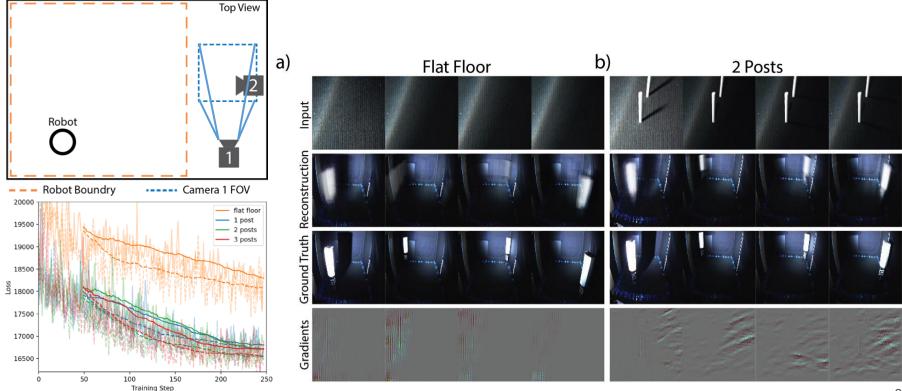
Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.

Flash Photography for Data-driven Hidden Scene Recovery



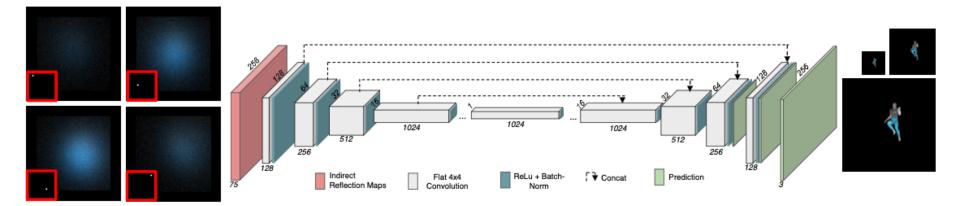
Tancik, Satat, Raskar. Flash Photography for Data-Driven Hidden Scene Recovery. Arxiv, 2018.

Data Driven NLOS with a Traditional Camera



Tancik, Swedish, Satat, Raskar. Data-Driven Non-Line-of-Sight Imaging with a Traditional Camera. COSI, 2018.

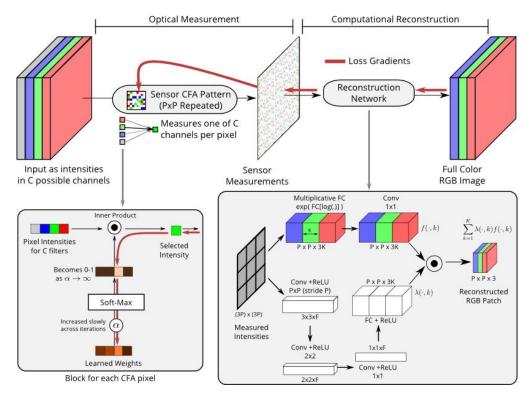
Steady State NLOS



Wenzheng Chen, Simon Daneau, Fahim Mannan, Felix Heide. Steady-state Non-Line-of-Sight Imaging. CVPR, 2019.

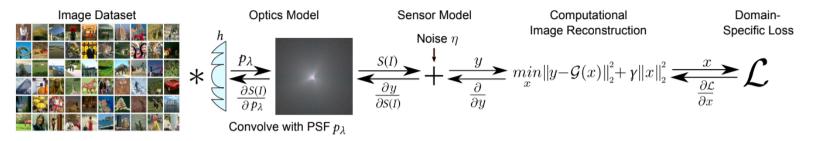
Imaging System Design

Learning Sensor Multiplexing Design through Back-propagation



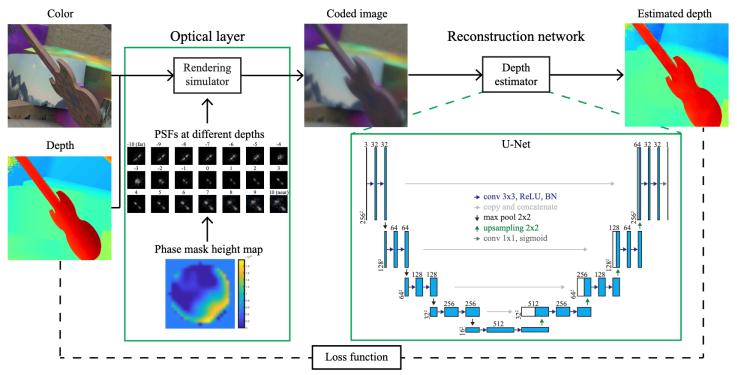
Ayan Chakrabarti. Learning Sensor Multiplexing Design through Back-propagation. NIPS, 2016.

Achromatic Extended Depth of Field and Super-resolution Imaging



V. Sitzmann, S. Diamond, Y. Peng, X, Dun, S. Boyd, W. Heidrich, F. Heide, G. Wetzstein. *End-to-end Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-resolution Imaging*. ACM Siggraph, 2018.

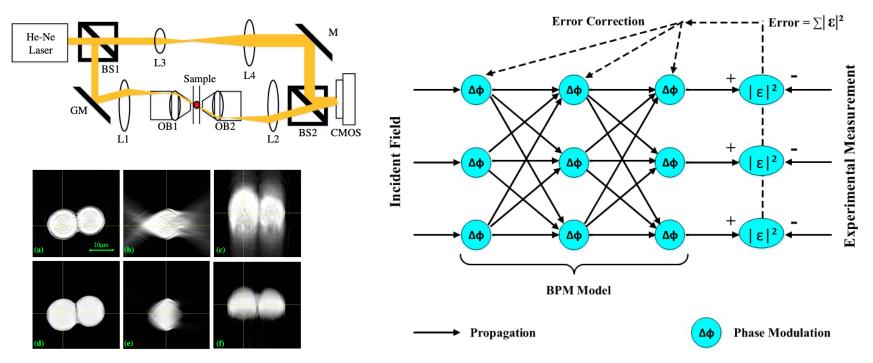
PhaseCam3D



Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, A. Veeraraghavan. *PhaseCam3D - Learning Phase Masks for Passive Single View Depth Estimation*. ICCP, 2019.

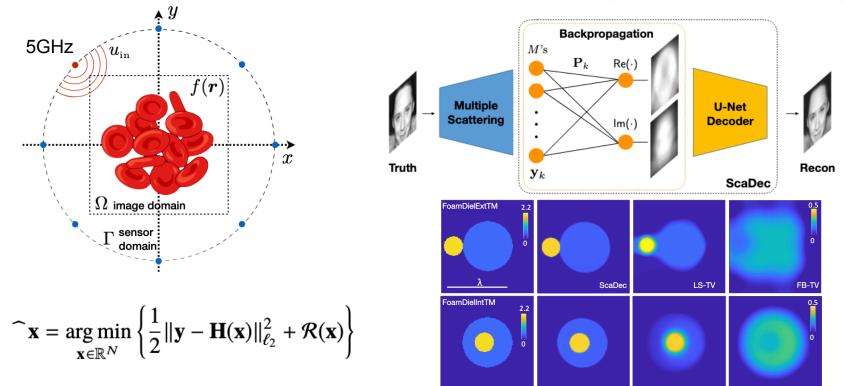
Tomography and Deconvolution

Learning Approach to Optical Tomography



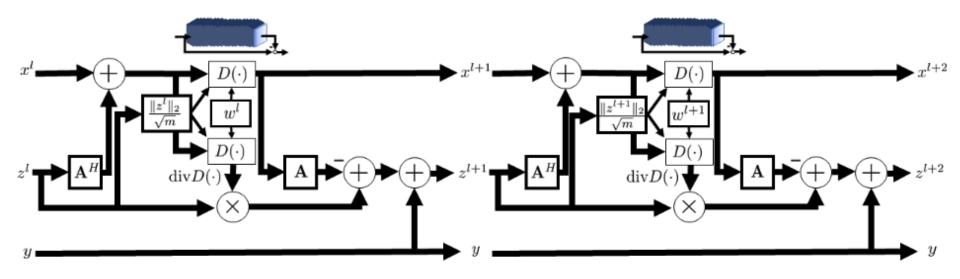
Ulugbek S. Kamilov, Ioannis N. Papadopoulos, Morteza H. Shoreh, Alexandre Goy, Cedric Vonesch, Michael Unser, and Demetri Psaltis. *Learning approach to optical tomography*. Optica, 2015.

Efficient and accurate inversion of multiple scattering with deep learning



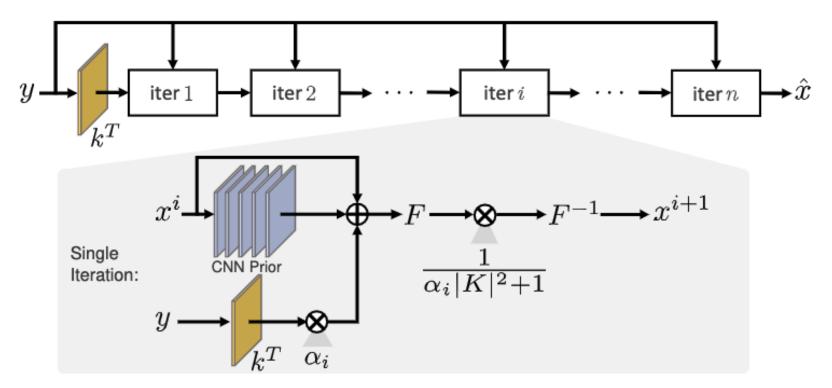
Y. Sun, Z. Xia, U. S. Kamilov. Efficient and accurate inversion of multiple scattering with deep learning. Optics Express, 2018. 33

Unrolled Optimization: Learned D-AMP

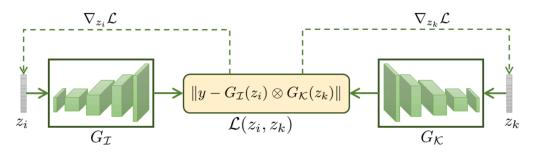


C. A. Metzler, A. Mousavi, R. G. Baraniuk, Learned D-AMP: Principled Neural Network based Compressive Image Recovery. NIPS, 2017.

Unrolled Optimization: Deep Priors



Blind Image Deconvolution using Deep Generative Priors



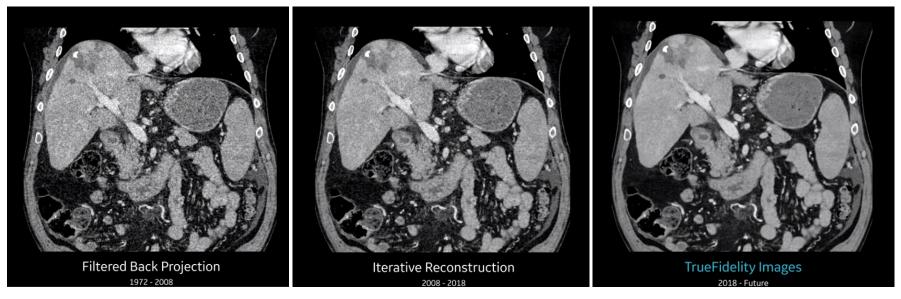
$$egin{argmin}{l} rgmin_{i,z_i,z_k} \|y-i\otimes G_\mathcal{K}(z_k)\|^2 + au\|i-G_\mathcal{I}(z_i)\|^2 \ &+ \zeta\|y-G_\mathcal{I}(z_i)\otimes G_\mathcal{K}(z_k)\|^2 +
ho\|i\|_{ ext{tv}}. \end{split}$$

M. Asim, F. Shamshad, A. Ahmed. Blind Image Deconvolution using Deep Generative Priors. Arxiv, 2019.

See Also: Paul Hand and Vladislav Voroninski. *Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk.* ³⁶ Proceedings of Conf. On Learning Theory, PMLR, 2018.

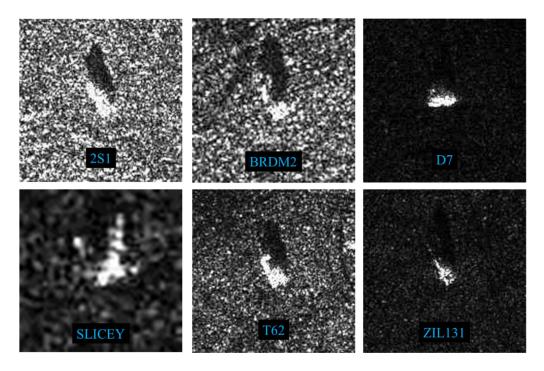
GE APEX CT

Deep Learning Image Reconstruction: Cleared by FDA in April 2019



https://www.gehealthcare.com/en-GB/products/computed-tomography/revolution-apex

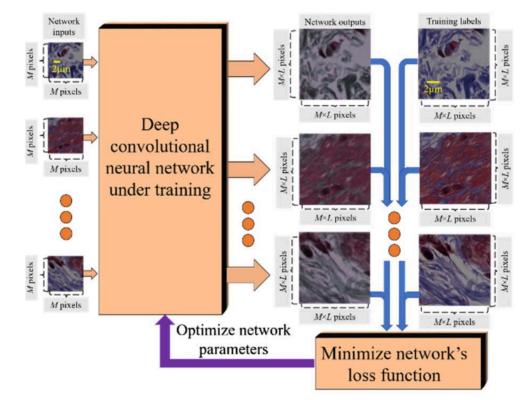
Convolutional neural networks for synthetic aperture radar classification



Andrew Profeta, Andres Rodriguez, H. Scott Clouse. *Convolutional neural networks for synthetic aperture radar classification*. Proc. SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, 2016.

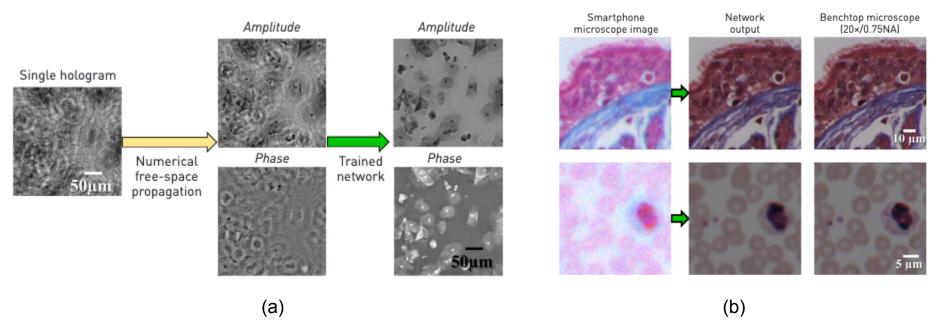
Microscopy

Deep learning microscopy



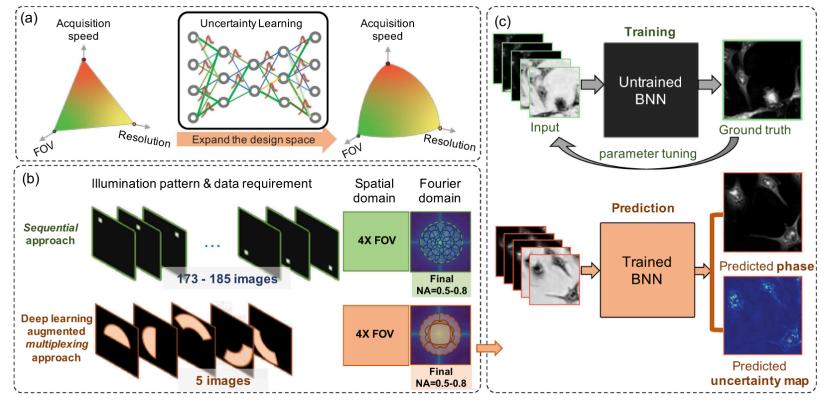
Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan. *Deep Learning Microscopy*. Optica, 2017.

Towards a Thinking Microscope



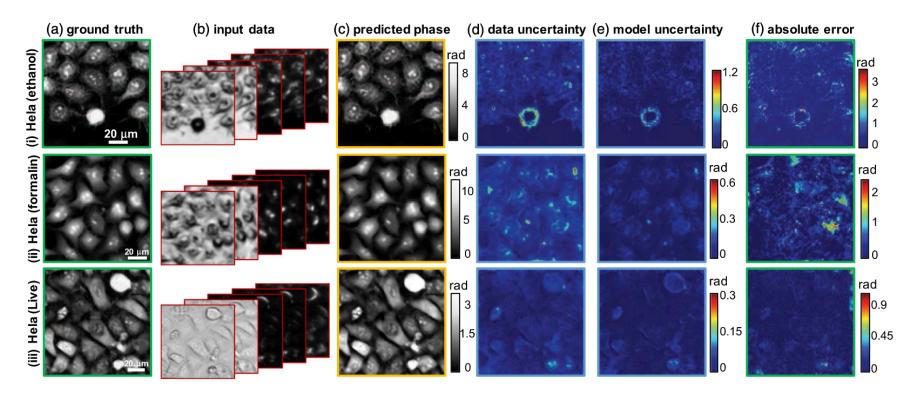
Y. Rivenson and A. Ozcan. Toward a Thinking Microscope: Deep Learning in Optical Microscopy and Image Reconstruction. OSA OPN, 2018.

Reliable deep-learning-based phase imaging with uncertainty quantification



Y. Xue, S. Cheng, Y. Li, L. Tian. *Reliable deep-learning-based phase imaging with uncertainty quantification*. Optica, 2019.

Reliable deep-learning-based phase imaging with uncertainty quantification



Y. Xue, S. Cheng, Y. Li, L. Tian. *Reliable deep-learning-based phase imaging with uncertainty quantification*. Optica, 2019.

Summary

- Moving beyond pure classification problems
- U-net is very popular architecture
- "Hybrid" iterative methods using learning is an emerging field
- Still difficult to demonstrate generalization across different optical setups
 - Calibration to synthetic training data still required
 - Training data collected on same instrument as test device

Summary

Computational Imaging is Diverse:

- Low-level Processing (Denoising and Demosaicking)
- 3D Imaging
- Lensless, Speckle, Scattering
- Non-line-of-sight
- Imaging System Design
- Tomography and Deconvolution
- Microscopy