ciml.media.mit.edu

Data-Driven Computational Imaging

Time Title

Presenter

Guy Satat (MIT)

Tristan Swedish (MIT)

08:30 – 08:50 Introduction to Computational Imaging

08:50 – 09:15 Data-Driven Computational Imaging Survey

09:15 – 10:00 Data-Driven Non-line-of-sight Imaging and 3D Reconstruction Guy Satat (MIT)

10:00 – 10:20 Break

10:20 – 11:00 Rendering and Simulation for Data-Driven Computational Imaging Tristan Swedish (MIT)

11:00 – 12:00 Visual Sensing Using Machine Learning

Vivek Boominathan (Rice), Ashok Veeraraghavan (Rice)

П

Data Driven Non-line-of-sight Imaging and 3D Reconstruction

Guy Satat

Data-Driven Computational Imaging @ CVPR 2019

Why Non-Line-of-Sight Imaging?

Seeing Around Corners

Radar Camera Lidar

- Resolution
- Optical Contrast

Light Scatters

Light and Matter in a Nutshell

Absorption

Scattering

Imaging Geometries

Around the Corner

Through Scattering Transmission Optics Reflection Optics

Challenges With Computational Imaging

• Physical modeling (forward model):

• Inference (Inversion):

$$x = A^{-1}(b)$$

- A can be hard to model
- *A* is usually non-invertible

Data-Driven Computational Imaging Advantages

- No need of a physical model
- No need to invert a model
 - \rightarrow More robust solution
- Directly learn: $b \rightarrow x$

Challenges with Data-Driven NLOS Imaging

- Lack of available data
- Non-traditional sensors
 - LIDAR, ToF
- Hard to label data
 - Requires additional sensors and experiments
- Generalization

NLOS Computational Imaging A Few Examples

We Have to Calibrate

Classify Pose Without Calibration

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, Ramesh Raskar, Optics Express 2017

Solution: Deep Learning

Known to Learn Invariant Models

SPAD Pixel

Time

How to Train? Data?

Synthetic Training Dataset

Learning Invariants to Calibration Parameters

- Create synthetic dataset
- For each example:
 - Randomly sample scene properties
 - Compute forward model
- Train CNN

Learning Invariants to Calibration Parameters

Experimental Results

Train on Synthetic Data Test on Lab Measurement

Do We Really Need a CNN?

Training set	Clean dataset	Realistic dataset
Mean Example	33.3	33.3
KNN	53.0	30.0
SVM	57.1	20.0
Random forest	68.8	30.0
Single layer network	68.2	23.8
Our CNN	84.0	76.6

What Does The Network Learn?

Seeing Around Corners Flash Photography for NLOS Localization and Identification

Tancik, Satat, Raskar, "Flash Photography for Data-Driven Hidden Scene Recovery," 2017. Matthew Tancik, M.Eng Thesis, 2018.

a

Ground Truth

Measurement

Preprocessing Steps

Localization

a

Measurement

Identification

Reconstruction

Network Architecture

Where is the Information?

Training with Real Data

b) Measurement c) Ground Truth d) Reconstruction

Training Data

Base Camera Target Camera

Test Data

Measurement

Ground Truth

Reconstruction

Training Data

Base Camera Target Camera

Test Data

We Don't Really Need A Corner

Tancik, Swedish, Satat, Raskar, "Data-Driven Non-Line-of-Sight Imaging With A Traditional Camera," 2018

Gradients

Input

Reconstruction

Flat Floor

2 Posts

the state of the

Multiple Illumination Points End-to-end Reconstruction

Chen, Daneau, Manna, Heide, "Steady-state Non-Line-of-Sight Imaging," CVPR, 2019

Multiple Illumination Points End-to-end Reconstruction

Chen, Daneau, Manna, Heide, "Steady-state Non-Line-of-Sight Imaging," CVPR, 2019

Adaptive Lighting, 3D localization, Classification

Chandran, Jayasuriya, "Adaptive Lighting for Data-Driven Non-Line-of-Sight 3D Localization and Object Identification," 2019

Imaging Through Diffusers

Li, Xue, Tian, "Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media," 2018

Imaging Through Diffusers

Li, Xue, Tian, "Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media," 2018

Imaging Through Multimode Fibers

Borhani, Kakkava, Moser, Psaltis, "Learning to see through multimode fibers," 2018

Limitations and Challenges

- Generalizability vs. Accuracy
- Classification vs. Regression / Reconstruction
- Data Generation Is The Bottleneck
- More complex physics (imaging through fog)

Can we leverage data and our physical knowledge?

Physics + Data

$$x = argmin ||Ax - b||^2 + \lambda R(x)$$

- 1. Brute force: $b \rightarrow x$
- 2. Learn the regularizer R(x):
 - *A* is defined by physics.
 - Replace projection step by denoising.
- 3. Learn A (or its properties)
 - Split the problem to several sub problems.
 - Each sub-problem is learned separately.
 - Physics define the connections.

ADMM-Net

Yang, Sun, Li, Xu, "Deep ADMM-Net for Compressive Sensing MRI," NIPS, 2016

Unrolled Optimization With Deep Priors

Diamond, Sitzmann, Heide, Wetzstein, "Unrolled Optimization with Deep Priors," 2018

Summary

media.mit.edu/~guysatat guysatat@mit.edu

- NLOS Computational Imaging
- Data Driven NLOS Computational Imaging
 - Through scattering
 - Around corners
 - SPAD sensor / traditional camera
- Incorporating Physics

