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Data Driven
Non-line-of-sight
Imaging and 3D Reconstruction

Guy Satat

Data-Driven Computational Imaging @ CVPR 2019



Why Non-Line-of-Sight
Imaging?




Seeing Around Corners
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Light Scatters




Light and Matter in a Nutshell

Absorption Scattering

Object Lens




Imaging Geometries

Around the Corner Through Scattering

Transmission Optics Reflection Optics

Gtk




Challenges With Computational Imaging

* Physical modeling (forward model):

b =A(x)

o Vo

* Inference (Inversion):

x = A~1(b)
e A can be hard to model
* A is usually non-invertible



Data-Driven Computational Imaging Advantages

* No need of a physical model

* No need to invert a model

—> More robust solution

* Directly learn: b — x
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Challenges with Data-Driven NLOS Imaging

e Lack of available data

 Non-traditional sensors
* LIDAR, ToF

* Hard to label data
* Requires additional sensors and experiments

* Generalization



NLOS Computational Imaging

A Few Examples



We Have to Calibrate



Classify Pose Without Calibration

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, Ramesh Raskar, Optics Express 2017



Solution:
Deep Learning

Known to Learn Invariant Models
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How to Train?
DEI: K



Synthetic Training Dataset



Learning Invariants to Calibration Parameters

* Create synthetic dataset
* For each example:

* Randomly sample scene properties
 Compute forward model

* Train CNN



Measurement Frames
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Learning Invariants to Calibration Parameters

Scattering Profile Field of View Incident Position
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Experimental Results

a) Diffuser

(paper sheet)
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Do We Really Need a CNN?

Training set | Clean dataset | Realistic dataset

Mean Example
KNN

SVM

Random forest
Single layer network
Our CNN




What Does The Network Learn?

a) Spatial Filters b) Temporal Filters
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Seeing Around Corners

Flash Photography for
NLOS Localization and ldentification

Tancik, Satat, Raskar, “Flash Photography for Data-Driven Hidden Scene Recovery,” 2017.
Matthew Tancik, M.Eng Thesis, 2018.
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Ground Truth Measurement
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Preprocessing Steps




Localization
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ldentification
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Network Architecture

Convolution Fully Connected Pooling

b) c)
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Where is the Information?
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b) Measurement c¢) Ground Truth d) Reconstruction

Training with Real Data
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Test Data

Training Data

Base Camera Target Camera

Camera
Measurement

Ground Truth Reconstruction
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We Don’t Really Need A Corner

@
Top View

Robot Boundry Camera 1 FOV

Tancik, Swedish, Satat, Raskar, “Data-Driven Non-Line-of-Sight Imaging With A Traditional Camera,” 2018
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Multiple lllumination Points
End-to-end Reconstruction e

Occluded
Scene
Continuous
RGB Beam

Chen, Daneau, Manna, Heide, “Steady-state Non-Line-of-Sight Imaging,” CVPR, 2019



Multiple lllumination Points
End-to-end Reconstruction

Chen, Daneau, Manna, Heide, “Steady-state Non-Line-of-Sight Imaging,” CVPR, 2019



Adaptive Lighting, 3D localization, Classification

Experimental setup Test data on various objects

%Test images

Wall CN N

Images Train

images

’ llll-n Localization
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Identification

' lllumination of Optimal Accuracies
Adaptive Patches

Lighting » e 'Train .lll-n
Algorithm - Images

Adaptive lighting for 3D
Localization

Chandran, Jayasuriya, “Adaptive Lighting for Data-Driven Non-Line-of-Sight 3D Localization and Object Identification,” 2019



Imaging Through Ditffusers

Test on seen objects through unseen diffusers
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Li, Xue, Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” 2018



Imaging Through Diffusers

Test on unseen objects of the same type through unseen diffusers

Ground
truth

Measured
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CNN
prediction
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Li, Xue, Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” 2018




Imaging Through Multimode Fibers

Borhani, Kakkava, Moser, Psaltis, “Learning to see through multimode fibers,” 2018
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Limitations and Challenges

* Generalizability vs. Accuracy
* Classification vs. Regression / Reconstruction
* Data Generation Is The Bottleneck

* More complex physics (imaging through fog)



What’s Next?

Model:

Solution: X = A_l(b)

InPractice:  x = argmin||Ax — b||* + AR(x)

Can we leverage data and our physical knowledge?



Physics + Data
x = argmin||Ax — b||* + AR(x)
1. Brute force: b — x

2. Learn the regularizer R(x):

* A is defined by physics.

* Replace projection step by denoising.
3. Learn A (or its properties )

* Split the problem to several sub problems.
* Each sub-problem is learned separately.
* Physics define the connections.



ADMM-Net

Sampling data Reconstructed
in k-space _ MR image

Sampling data Reconstructed
in k—-space MR image

Sub-stage n

Yang, Sun, Li, Xu, “Deep ADMM-Net for Compressive Sensing MRI,” NIPS, 2016



Unrolled Optimization With Deep Priors

Single
Iteration:

CNN Prior

Diamond, Sitzmann, Heide, Wetzstein, “Unrolled Optimization with Deep Priors,” 2018



media.mit.edu/~guysatat

Summa 'y guysatat@mit.edu

* NLOS Computational Imaging

* Data Driven NLOS Computational Imaging
* Through scattering
* Around corners
* SPAD sensor / traditional camera

* Incorporating Physics




